Minimum Words of Codes from Affine Planes

被引:5
|
作者
Ghinelli, Dina [1 ]
de Resmini, Marialuisa J. [1 ]
Key, Jennifer D. [2 ]
机构
[1] Univ Roma La Sapienza, Dipartimento Matemat, I-00185 Rome, Italy
[2] Univ Western Cape, Dept Math & Appl Math, ZA-7535 Bellville, South Africa
关键词
Non-desarguesian planes; codes;
D O I
10.1007/s00022-008-2096-y
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that there are non-desarguesian affine planes of order 16 for which the binary codes have vectors of minimum weight that are not the incidence vectors of lines. This is in contrast to the desarguesian case and answers an open question as to the nature of the minimum words of the code of a non-desarguesian affine plane. Further, we show that all the nontranslation planes of order 16 have hull of minimum weight smaller than 32, in fact containing words of weight 24. Most of these words of weight 24 yield words of weight 16 in the binary code of some affine plane of order 16 that are not the incidence vectors of affine lines. The search has also shown that all the non-desarguesian planes of order at most 16 are not tame. These results are also in contrast to what is known in the desarguesian case. The results are mainly by computer, using Magma.
引用
收藏
页码:43 / 51
页数:9
相关论文
共 50 条
  • [41] RANK 3 AFFINE PLANES
    KALLAHER, MJ
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1972, 36 (01) : 79 - 86
  • [42] AFFINE PLANES WITH AN ORTHOGONALITY RELATIONSHIP
    STRUVE, H
    ZEITSCHRIFT FUR MATHEMATISCHE LOGIK UND GRUNDLAGEN DER MATHEMATIK, 1984, 30 (03): : 223 - 231
  • [43] On affine variety codes from the Klein quartic
    Olav Geil
    Ferruh Özbudak
    Cryptography and Communications, 2019, 11 : 237 - 257
  • [44] Convexity in Topological Affine Planes
    Raghavan Dhandapani
    Jacob E. Goodman
    Andreas Holmsen
    Richard Pollack
    Shakhar Smorodinsky
    Discrete & Computational Geometry, 2007, 38 : 243 - 257
  • [45] The coordinatization of affine planes by rings
    Schmidt, SE
    Steinitz, R
    GEOMETRIAE DEDICATA, 1996, 62 (03) : 299 - 317
  • [46] DESARGUESIAN AFFINE HJELMSLEV PLANES
    LORIMER, JW
    LANE, ND
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 1975, 278 : 336 - 352
  • [47] METRIC RELATIONS IN AFFINE PLANES
    QUAISSER, E
    MATHEMATISCHE NACHRICHTEN, 1971, 48 (1-6) : 1 - &
  • [48] AFFINE AND PROJECTIVE-PLANES
    ASSMUS, EF
    KEY, JD
    DISCRETE MATHEMATICS, 1990, 83 (2-3) : 161 - 187
  • [49] Area functions on affine planes
    Hahl, Hermann
    Weber, Benjamin
    JOURNAL OF GEOMETRY, 2016, 107 (02) : 483 - 507
  • [50] MORPHISMS OF AFFINE HJELMSLEV PLANES
    LORIMER, JW
    LANE, ND
    ATTI DELLA ACCADEMIA NAZIONALE DEI LINCEI RENDICONTI-CLASSE DI SCIENZE FISICHE-MATEMATICHE & NATURALI, 1974, 56 (06): : 880 - 885