THE CINDERELLA CAREER OF PROJECTIVE GEOMETRY

被引:0
|
作者
SHENITZER, A
机构
[1] Department of Mathematics, York University, North York, M3J 1P3, Ontario
来源
MATHEMATICAL INTELLIGENCER | 1991年 / 13卷 / 02期
关键词
D O I
10.1007/BF03024087
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
[No abstract available]
引用
收藏
页码:50 / 55
页数:6
相关论文
共 50 条
  • [41] Collineations in a finite projective geometry
    Veblen, Oswald
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1907, 8 (1-4) : 366 - 368
  • [42] Einstein on involutions in projective geometry
    Tilman Sauer
    Tobias Schütz
    Archive for History of Exact Sciences, 2021, 75 : 523 - 555
  • [43] Projective Geometry and Phenomenological Symmetry
    Kyrov, V. A.
    JOURNAL OF SIBERIAN FEDERAL UNIVERSITY-MATHEMATICS & PHYSICS, 2012, 5 (01): : 82 - 90
  • [44] How Useful is Projective Geometry?
    Gros, P.
    Hartley, R.
    Mohr, R.
    Quan, L.
    Computer Vision and Image Understanding, 1997, 65 (03): : 442 - 446
  • [45] Projective and affine geometry of paths
    Veblen, O
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1922, 8 : 347 - 350
  • [46] Projective Geometry and Feedback Stabilization
    Bokor, J.
    Szabo, Z.
    2017 IEEE 21ST INTERNATIONAL CONFERENCE ON INTELLIGENT ENGINEERING SYSTEMS (INES), 2017, : 11 - 16
  • [47] Categorical Aspects in Projective Geometry
    Claude-Alain Faure
    Alfred Frölicher
    Applied Categorical Structures, 1998, 6 : 87 - 103
  • [48] Intuitive axioms of projective geometry
    Heyting, A
    MATHEMATISCHE ANNALEN, 1928, 98 : 491 - 538
  • [49] Duality in projective geometry.
    Lennes, NJ
    ANNALS OF MATHEMATICS, 1911, 13 : 11 - 16
  • [50] A THEOREM IN FINITE PROJECTIVE GEOMETRY
    YANG, CT
    BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1949, 55 (10) : 930 - 933