ELEMENTARY GATES FOR QUANTUM COMPUTATION

被引:2837
|
作者
BARENCO, A
BENNETT, CH
CLEVE, R
DIVINCENZO, DP
MARGOLUS, N
SHOR, P
SLEATOR, T
SMOLIN, JA
WEINFURTER, H
机构
[1] IBM CORP, RES, YORKTOWN HTS, NY 10598 USA
[2] UNIV CALGARY, DEPT COMP SCI, CALGARY, AB T2N 1N4, CANADA
[3] MIT, COMP SCI LAB, CAMBRIDGE, MA 02139 USA
[4] AT&T BELL LABS, MURRAY HILL, NJ 07974 USA
[5] NYU, DEPT PHYS, NEW YORK, NY 10003 USA
[6] UNIV CALIF LOS ANGELES, DEPT PHYS, LOS ANGELES, CA 90024 USA
[7] UNIV INNSBRUCK, INST EXPTL PHYS, A-6020 INNSBRUCK, AUSTRIA
来源
PHYSICAL REVIEW A | 1995年 / 52卷 / 05期
关键词
D O I
10.1103/PhysRevA.52.3457
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We show that a set of gates that consists of all one-bit quantum gates [U(2)] and the two-bit exclusive-OR gate [that maps Boolean values (x,y) to (x,x+y)] is universal in the sense that all unitary operations on arbitrarily many bits n [U(2(n))] can be expressed as compositions of these gates. We investigate the number of the above gates required to implement other gates, such as generalized Deutsch-Toffoli gates, that apply a specific U(2) transformation to one input bit if and only if the logical AND of all remaining input bits is satisfied. These gates play a central role in many proposed constructions of quantum computational networks. We derive upper and lower bounds on the exact number of elementary gates required to build up a variety of two- and three-bit quantum gates, the asymptotic number required for n-bit Deutsch-Toffoli gates, and make some observations about the number required for arbitrary n-bit unitary operations.
引用
收藏
页码:3457 / 3467
页数:11
相关论文
共 50 条
  • [1] Elementary gates for cartoon computation
    Czachor, Marek
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2007, 40 (31) : F753 - F759
  • [2] Fast elementary gates for universal quantum computation with Kerr parametric oscillator qubits
    Kanao, Taro
    Goto, Hayato
    [J]. PHYSICAL REVIEW RESEARCH, 2024, 6 (01):
  • [3] Efficient quantum computation with probabilistic quantum gates
    Duan, LM
    Raussendorf, R
    [J]. PHYSICAL REVIEW LETTERS, 2005, 95 (08)
  • [4] Elementary quantum gates in different bases
    Sergey A. Podoshvedov
    [J]. Quantum Information Processing, 2016, 15 : 3967 - 3993
  • [5] Elementary quantum gates with Gaussian states
    Sergey A. Podoshvedov
    Jaewan Kim
    Kisik Kim
    [J]. Quantum Information Processing, 2014, 13 : 1723 - 1749
  • [6] Elementary quantum gates with Gaussian states
    Podoshvedov, Sergey A.
    Kim, Jaewan
    Kim, Kisik
    [J]. QUANTUM INFORMATION PROCESSING, 2014, 13 (08) : 1723 - 1749
  • [7] Elementary quantum gates in different bases
    Podoshvedov, Sergey A.
    [J]. QUANTUM INFORMATION PROCESSING, 2016, 15 (10) : 3967 - 3993
  • [8] Robust gates for holonomic quantum computation
    Florio, G
    Facchi, P
    Fazio, R
    Giovannetti, V
    Pascazio, S
    [J]. PHYSICAL REVIEW A, 2006, 73 (02):
  • [9] Design of gates for quantum computation: The not gate
    Mozyrsky, D
    Privman, V
    Hotaling, SP
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 1997, 11 (18): : 2207 - 2215
  • [10] Exploiting Quantum Gates in Secure Computation
    Ehsanpour, Maryam
    Cimato, Stelvio
    Ciriani, Valentina
    Damiani, Ernesto
    [J]. 2017 EUROMICRO CONFERENCE ON DIGITAL SYSTEM DESIGN (DSD), 2017, : 291 - 294