Interacting Multiple Model Particle-type Filtering Approaches to Ground Target Tracking

被引:2
|
作者
Guo, Ronghua [1 ,3 ]
Qin, Zheng [2 ]
Li, Xiangnan [2 ,4 ]
Chen, Junliang [2 ,5 ]
机构
[1] Tsinghua Univ, Dept Comp Sci & Technol, Beijing, Peoples R China
[2] Tsinghua Univ, Sch Software, Beijing, Peoples R China
[3] Navy Engn Univ, Wuhan, Hubei, Peoples R China
[4] Hunan Univ, Changsha, Peoples R China
[5] Xi An Jiao Tong Univ, Xian, Peoples R China
基金
中国国家自然科学基金;
关键词
particle filter; unscented particle filter (UPF); interacting multiple model (IMM); ground target tracking;
D O I
暂无
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Ground maneuvering target tracking is a class of nonlinear and/or no-Gaussian filtering problem. A new interacting multiple model unscented particle filter (IMMUPF) is presented to deal with the problem. A bank of unscented particle filters is used in the interacting multiple model (IMM) framework for updating the state of moving target. To validate the algorithm, two groups of multiple model filters: IMM-type filters and particle-type multiple model filters, are compared for their capability in dealing with ground maneuvering target tracking problem. Simulation shows that particle-type filters outperform IMM-type filters in the estimate accuracy and the IMMUPF method relatively has much better performance than the IMMPF method.
引用
收藏
页码:23 / 30
页数:8
相关论文
共 50 条
  • [21] Interacting multiple model methods in target tracking: A survey
    Mazor, E
    Averbuch, A
    Bar-Shalom, Y
    Dayan, J
    IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, 1998, 34 (01) : 103 - 123
  • [22] An Improved Interacting Multiple Model Filtering Algorithm Based on the Cubature Kalman Filter for Maneuvering Target Tracking
    Zhu, Wei
    Wang, Wei
    Yuan, Gannan
    SENSORS, 2016, 16 (06):
  • [23] Efficient multirate interacting multiple model particle filter (MRIMM-PF) for target tracking
    Hong, Lang
    Bakich, Michael
    Layne, Jeffery R.
    INTELLIGENT COMPUTING: THEORY AND APPLICATIONS IV, 2006, 6229
  • [24] Interacting Multiple Model Particle Filtering Using New Particle Resampling Algorithm
    Chang, Dah-Chung
    Fan, Meng-Wei
    2014 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM 2014), 2014, : 3215 - 3219
  • [25] Multiple target tracking with constrained motion using particle filtering methods
    Kyriakides, I
    Morrell, D
    Papandreou-Suppappola, A
    IEEE CAMSAP 2005: FIRST INTERNATIONAL WORKSHOP ON COMPUTATIONAL ADVANCES IN MULTI-SENSOR ADAPTIVE PROCESSING, 2005, : 85 - 88
  • [26] Multiple Target Tracking Using Particle Filtering and Adaptive Waveform Design
    Kyriakides, I.
    Trueblood, T.
    Morrell, Darryl
    Papandreou-Suppappola, A.
    2008 42ND ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS AND COMPUTERS, VOLS 1-4, 2008, : 1188 - +
  • [27] Multiple Target Tracking with Particle Filtering in UWB Radar Sensor Networks
    Sobhani, Bita
    Paolini, Enrico
    Mazzotti, Matteo
    Giorgetti, Andrea
    Chiani, Marco
    2015 INTERNATIONAL CONFERENCE ON LOCATION AND GNSS (ICL-GNSS), 2015,
  • [28] COMPRESSIVE PARTICLE FILTERING FOR TARGET TRACKING
    Wang, Eric
    Silva, Jorge
    Carin, Lawrence
    2009 IEEE/SP 15TH WORKSHOP ON STATISTICAL SIGNAL PROCESSING, VOLS 1 AND 2, 2009, : 233 - 236
  • [29] Target Tracking by Symbiotic Particle Filtering
    Bugallo, Monica F.
    Djuric, Petar M.
    2010 IEEE AEROSPACE CONFERENCE PROCEEDINGS, 2010,
  • [30] Improved Target Tracking with Particle Filtering
    Djuric, Petar M.
    Bugallo, Monica F.
    2009 IEEE AEROSPACE CONFERENCE, VOLS 1-7, 2009, : 1820 - 1826