DISCRETE ELEMENT METHOD FOR MULTISCALE MODELING

被引:15
|
作者
Bruchmuller, J. [1 ]
Gu, S. [1 ]
Luo, K. H. [1 ]
Van Wachem, B. G. M. [2 ]
机构
[1] Univ Southampton, Sch Engn Sci, Energy Technol Res, Southampton SO17 1BJ, Hants, England
[2] Imperial Coll London, Dept Mech Engn, London SW7 2AZ, England
基金
英国工程与自然科学研究理事会;
关键词
Multiscale modeling; discrete element method; fluidized beds; heat and mass transfer; drying;
D O I
10.1142/S1756973710000254
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A discrete element method (DEM) has been developed to provide highly accurate and detailed predictions of the Lagrangian particle phase. Especially in this study, DEM has been used together with an Eulerian approach for the fluid phase to look at interphase exchange phenomena in a multiphase-multiscale modeling approach. The drying process inside a fluidized bed coffee bean roaster has been chosen. Herein, heat, mass, and momentum transport are solved on a fluid cell level; heat, mass, and momentum transfer coefficients are solved at a particle scale level; and 1D temperature and moisture content profiles are solved inside each coffee bean on a sub-particle scale level. Therefore, this multiscale approach provides much more information compared to existing coffee bean roaster models. In this work, a detailed description of this method is provided and results on different scale levels have been discussed. Modeling data and experimental results are compared and found to be in good agreement.
引用
收藏
页码:147 / 162
页数:16
相关论文
共 50 条
  • [31] A multiscale coupling approach between discrete element method and finite difference method for dynamic analysis
    Li, Mingguang
    Yu, Haitao
    Wang, Jianhua
    Xia, Xiaohe
    Chen, Jinjian
    [J]. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2015, 102 (01) : 1 - 21
  • [32] Multiscale Simulation with a Two-Way Coupled Lattice Boltzmann Method and Discrete Element Method
    Maier, Marie-Luise
    Henn, Thomas
    Thaeter, Gudrun
    Nirschl, Hermann
    Krause, Mathias J.
    [J]. CHEMICAL ENGINEERING & TECHNOLOGY, 2017, 40 (09) : 1591 - 1598
  • [33] Hierarchical multiscale modeling for flows in fractured media using generalized multiscale finite element method
    Efendiev Y.
    Lee S.
    Li G.
    Yao J.
    Zhang N.
    [J]. GEM - International Journal on Geomathematics, 2015, 6 (02) : 141 - 162
  • [34] Alternative multiscale material and structures modeling by the finite-element method
    H. B. Coda
    R. A. K. Sanches
    R. R. Paccola
    [J]. Engineering with Computers, 2022, 38 : 311 - 329
  • [35] A priori error estimate of a multiscale finite element method for transport modeling
    Ouaki F.
    Allaire G.
    Desroziers S.
    Enchéry G.
    [J]. SeMA Journal, 2015, 67 (1) : 1 - 37
  • [36] Alternative multiscale material and structures modeling by the finite-element method
    Coda, H. B.
    Sanches, R. A. K.
    Paccola, R. R.
    [J]. ENGINEERING WITH COMPUTERS, 2022, 38 (SUPPL 1) : 311 - 329
  • [37] A multiscale modeling technique for bridging molecular dynamics with finite element method
    Lee, Yongchang
    Basaran, Cemal
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2013, 253 : 64 - 85
  • [38] Higher Order Multiscale Finite Element Method for Heat Transfer Modeling
    Klimczak, Marek
    Cecot, Witold
    [J]. MATERIALS, 2021, 14 (14)
  • [39] Toward Multiscale Modeling of Proteins and Bioagglomerates: An Orientation-Sensitive Diffusion Model for the Integration of Molecular Dynamics and the Discrete Element Method
    Depta, Philipp Nicolas
    Jandt, Uwe
    Dosta, Maksym
    Zeng, An-Ping
    Heinrich, Stefan
    [J]. JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2019, 59 (01) : 386 - 398
  • [40] Modeling of shield machine tunneling experiment by discrete element method
    Wu, Li
    Liu, Chang
    [J]. MECHATRONICS ENGINEERING, COMPUTING AND INFORMATION TECHNOLOGY, 2014, 556-562 : 1200 - 1204