AUTOMORPHISMS OF Z(D)-SUBSHIFTS OF FINITE-TYPE

被引:22
|
作者
WARD, T [1 ]
机构
[1] UNIV E ANGLIA,SCH MATH,NORWICH NR4 7TJ,NORFOLK,ENGLAND
来源
基金
美国国家科学基金会;
关键词
D O I
10.1016/0019-3577(94)90020-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let (SIGMA, sigma) be a Z(d)-subshift of finite type. Under a strong irreducibility condition (strong specification), we show that Aut(SIGMA) contains any finite group. For Z(d)-subshifts of finite type without strong specification, examples show that topological mixing is not sufficient to give any finite group in the automorphism group in general: in particular, End (SIGMA) may be an abelian semigroup. For an example of a topologically mixing Z2-subshift of finite type, the endomorphism semigroup and automorphism group are computed explicitly. This subshift has periodic-point permutations that do not extend to automorphisms.
引用
收藏
页码:495 / 504
页数:10
相关论文
共 50 条