L1 SENSITIVITY MINIMIZATION FOR PLANTS WITH COMMENSURATE DELAYS

被引:0
|
作者
DAHLEH, MA [1 ]
OHTA, Y [1 ]
机构
[1] OSAKA UNIV,DEPT ELECTR ENGN,SUITA,OSAKA 565,JAPAN
关键词
L1 OPTIMAL CONTROL; DELAY AND INFINITE-DIMENSIONAL LINEAR SYSTEMS; LINEAR PROGRAMMING;
D O I
10.1007/BF01211562
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper we consider the problem of L1 sensitivity minimization for linear plants with commensurate input delays. We describe a procedure for computing the minimum performance, and we characterize optimal solutions. The computations involve solving a one-parameter family of finite-dimensional linear programs. Explicit solutions are presented for important special cases.
引用
收藏
页码:281 / 293
页数:13
相关论文
共 50 条
  • [1] Sensitivity of l1 minimization to parameter choice
    Berk, Aaron
    Plan, Yaniv
    Yilmaz, Ozgur
    [J]. INFORMATION AND INFERENCE-A JOURNAL OF THE IMA, 2021, 10 (02) : 397 - 453
  • [2] l1 MINIMIZATION WITH NOISY DATA
    Wojtaszczyk, P.
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2012, 50 (02) : 458 - 467
  • [3] Dynamic Updating for l1 Minimization
    Asif, M. Salman
    Romberg, Justin
    [J]. IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, 2010, 4 (02) : 421 - 434
  • [4] Stereo disparity and L1 minimization
    Kumar, A
    Haker, S
    Vogel, C
    Tannenbaum, A
    Zucker, S
    [J]. PROCEEDINGS OF THE 36TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-5, 1997, : 1125 - 1129
  • [5] Interpolation via weighted l1 minimization
    Rauhut, Holger
    Ward, Rachel
    [J]. APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2016, 40 (02) : 321 - 351
  • [6] A SIMPLER APPROACH TO WEIGHTED l1 MINIMIZATION
    Krishnaswamy, Anilesh K.
    Oymak, Samet
    Hassibi, Babak
    [J]. 2012 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2012, : 3621 - 3624
  • [7] Selective l1 Minimization for Sparse Recovery
    Van Luong Le
    Lauer, Fabien
    Bloch, Gerard
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2014, 59 (11) : 3008 - 3013
  • [8] Enhancing Sparsity by Reweighted l1 Minimization
    Candes, Emmanuel J.
    Wakin, Michael B.
    Boyd, Stephen P.
    [J]. JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2008, 14 (5-6) : 877 - 905
  • [9] Orbital minimization method with l1 regularization
    Lu, Jianfeng
    Thicke, Kyle
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2017, 336 : 87 - 103
  • [10] DENSITY MATRIX MINIMIZATION WITH l1 REGULARIZATION
    Lai, Rongjie
    Lu, Jianfeng
    Osher, Stanley
    [J]. COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2015, 13 (08) : 2097 - 2117