Finite Difference Time-Domain Modelling of Metamaterials: GPU Implementation of Cylindrical Cloak

被引:5
|
作者
Dawood, Attique [1 ]
机构
[1] Natl Univ Comp & Emerging Sci FAST, Dept Elect Engn, Islamabad, Pakistan
关键词
D O I
10.7716/aem.v2i2.171
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Finite difference time-domain (FDTD) technique can be used to model metamaterials by treating them as dispersive material. Drude or Lorentz model can be incorporated into the standard FDTD algorithm for modelling negative permittivity and permeability. FDTD algorithm is readily parallelisable and can take advantage of GPU acceleration to achieve speed-ups of 5x-50x depending on hardware setup. Metamaterial scattering problems are implemented using dispersive FDTD technique on GPU resulting in performance gain of 10x-15x compared to conventional CPU implementation.
引用
收藏
页码:10 / 17
页数:8
相关论文
共 50 条
  • [31] Optimizing Scattering Coefficients of Disordered Metamaterials Using the Finite-Difference Time-Domain Method
    Mock, Adam
    Hewlett, Sheldon
    2018 INTERNATIONAL APPLIED COMPUTATIONAL ELECTROMAGNETICS SOCIETY SYMPOSIUM (ACES), 2018,
  • [32] Optimizing Scattering Coefficients of Disordered Metamaterials Using the Finite-Difference Time-Domain Method
    Mock, Adam
    Hewlett, Sheldon
    APPLIED COMPUTATIONAL ELECTROMAGNETICS SOCIETY JOURNAL, 2019, 34 (02): : 308 - 309
  • [33] Graphics processor unit (GPU) acceleration of finite-difference time-domain (FDTD) algorithm
    Krakiwsky, SE
    Turner, LE
    Okoniewski, MM
    2004 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS, VOL 5, PROCEEDINGS, 2004, : 265 - 268
  • [34] Finite-difference time-domain methods
    F. L. Teixeira
    C. Sarris
    Y. Zhang
    D.-Y. Na
    J.-P. Berenger
    Y. Su
    M. Okoniewski
    W. C. Chew
    V. Backman
    J. J. Simpson
    Nature Reviews Methods Primers, 3
  • [35] MATHEMATICAL ANALYSIS AND TIME-DOMAIN FINITE ELEMENT SIMULATION OF CARPET CLOAK
    Li, Jichun
    Huang, Yunqing
    Yang, Wei
    Wood, Aihua
    SIAM JOURNAL ON APPLIED MATHEMATICS, 2014, 74 (04) : 1136 - 1151
  • [36] Finite-difference time-domain methods
    Teixeira, F. L.
    Sarris, C.
    Zhang, Y.
    Na, D. -Y.
    Berenger, J. -P.
    Su, Y.
    Okoniewski, M.
    Chew, W. C.
    Backman, V.
    Simpson, J. J.
    NATURE REVIEWS METHODS PRIMERS, 2023, 3 (01):
  • [37] Effects of Segmented Finite Difference Time Domain on GPU
    Chan, Jose Juan Mijares
    Battoo, Gagan
    Thulasiraman, Parimala
    Thulasiram, Ruppa K.
    PARALLEL PROCESSING AND APPLIED MATHEMATICS (PPAM 2013), PT II, 2014, 8385 : 130 - 139
  • [38] An efficient absorbing boundary for finite-difference time-domain field modelling in acoustics
    WANG Shuozhong (Shanghai University Shanghai 200072)Received
    Chinese Journal of Acoustics, 1997, (02) : 121 - 134
  • [39] Time-Domain Modelling: Combining ESM and a Finite-Difference Method for Thermoacoustic Devices
    Kleiven, Stig
    Kropp, Wolfgang
    Larsson, Krister
    ACTA ACUSTICA UNITED WITH ACUSTICA, 2010, 96 (04) : 773 - 783
  • [40] Modelling of radio tomography antennas using the finite-difference time-domain technique
    Vogt, DR
    Tealby, JM
    Marvin, AC
    IEE NATIONAL CONFERENCE ON ANTENNAS AND PROPAGATION, 1999, (461): : 225 - 229