ON WELL-POSEDNESS OF THE CAUCHY-PROBLEM FOR P-PARABOLIC SYSTEMS

被引:1
|
作者
ELFIKY, A
机构
[1] KYOTO UNIV,DEPT MATH,KYOTO 606,JAPAN
[2] UNIV ALEXANDRIA,FAC SCI,DEPT MATH,ALEXANDRIA,EGYPT
来源
关键词
D O I
10.1215/kjm/1250520665
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
引用
收藏
页码:569 / 586
页数:18
相关论文
共 50 条
  • [41] Global well-posedness of coupled parabolic systems
    Runzhang Xu
    Wei Lian
    Yi Niu
    Science China(Mathematics), 2020, 63 (02) : 321 - 356
  • [42] On the p-fold Well-posedness of Higher Order Abstract Cauchy Problem
    Toumi, Habiba
    Nouar, Ahmed
    JOURNAL OF SIBERIAN FEDERAL UNIVERSITY-MATHEMATICS & PHYSICS, 2024, 17 (03): : 304 - 317
  • [43] Global well-posedness of coupled parabolic systems
    Runzhang Xu
    Wei Lian
    Yi Niu
    Science China Mathematics, 2020, 63 : 321 - 356
  • [44] Global well-posedness of coupled parabolic systems
    Xu, Runzhang
    Lian, Wei
    Niu, Yi
    SCIENCE CHINA-MATHEMATICS, 2020, 63 (02) : 321 - 356
  • [45] CLASSIFICATION AND WELL-POSEDNESS OF THE CAUCHY-PROBLEM FOR 2ND-ORDER EQUATIONS IN A BANACH-SPACE
    MELNIKOVA, IV
    FILINKOV, AI
    DOKLADY AKADEMII NAUK SSSR, 1984, 276 (05): : 1066 - 1071
  • [47] ON THE WELL-POSEDNESS OF THE CAUCHY PROBLEM FOR SYSTEMS OF LINEAR GENERALIZED ORDINARY DIFFERENTIAL EQUATIONS
    Ashordia, Malkhaz
    Kutsia, Malkhaz
    Talakhadze, Mzia
    MEMOIRS ON DIFFERENTIAL EQUATIONS AND MATHEMATICAL PHYSICS, 2019, 77 : 105 - 113
  • [48] Well-posedness of Global Solution for a Nonlinear Parabolic Problem
    Zhang, Hai-liang
    2015 INTERNATIONAL CONFERENCE ON INFORMATION SCIENCE AND MANAGEMENT ENGINEERING (ICISME 2015), 2015, : 44 - 48
  • [49] Tent space well-posedness for parabolic Cauchy problems with rough coefficients
    Zaton, Wiktoria
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2020, 269 (12) : 11086 - 11164
  • [50] WELL-POSEDNESS AND ILL-POSEDNESS OF THE CAUCHY PROBLEM FOR THE GENERALIZED THIRRING MODEL
    Huh, Hyungjin
    Machihara, Shuji
    Okamoto, Mamoru
    DIFFERENTIAL AND INTEGRAL EQUATIONS, 2016, 29 (5-6) : 401 - 420