THE LOCAL GEOMETRIC ASYMPTOTICS OF CONTINUUM EIGENFUNCTION-EXPANSIONS .2. ONE-DIMENSIONAL SYSTEMS

被引:6
|
作者
FULLING, SA [1 ]
机构
[1] UNIV CALIF SANTA BARBARA,INST THEORET PHYS,SANTA BARBARA,CA 93106
关键词
D O I
10.1137/0514059
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
引用
收藏
页码:780 / 795
页数:16
相关论文
共 50 条
  • [21] CONNECTION BETWEEN LATTICE AND CONTINUUM MODELS FOR ONE-DIMENSIONAL SYSTEMS
    ILINA, VA
    SILAEV, PK
    THEORETICAL AND MATHEMATICAL PHYSICS, 1992, 93 (02) : 1232 - 1238
  • [22] Elementary electronic excitations in one-dimensional continuum and lattice systems
    Wang, DW
    Das Sarma, S
    PHYSICAL REVIEW B, 2002, 65 (03): : 1 - 14
  • [23] STUDY OF THE COULOMB BOLTZMANN KINETICS IN A QUASI-2-DIMENSIONAL ELECTRON-GAS BY EIGENFUNCTION-EXPANSIONS AND MONTE-CARLO SIMULATIONS
    ELSAYED, K
    WICHT, T
    HAUG, H
    BANYAI, L
    ZEITSCHRIFT FUR PHYSIK B-CONDENSED MATTER, 1992, 86 (03): : 345 - 357
  • [24] SPECTRAL DENSITY CORRELATIONS AND EIGENFUNCTION FLUCTUATIONS IN ONE-DIMENSIONAL QUASI-PERIODIC SYSTEMS
    EVANGELOU, SN
    ECONOMOU, EN
    JOURNAL OF PHYSICS-CONDENSED MATTER, 1991, 3 (29) : 5499 - 5513
  • [25] Geometric discord characterize localization transition in the one-dimensional systems
    Cheng, W. W.
    Gong, L. Y.
    Shan, C. J.
    Sheng, Y. B.
    Zhao, S. M.
    EUROPEAN PHYSICAL JOURNAL D, 2013, 67 (06):
  • [26] Geometric discord characterize localization transition in the one-dimensional systems
    W.W. Cheng
    L.Y. Gong
    C.J. Shan
    Y.B. Sheng
    S.M. Zhao
    The European Physical Journal D, 2013, 67
  • [27] Transient response of one-dimensional distributed systems: A closed form eigenfunction expansion realization
    Yang, B
    Wu, X
    JOURNAL OF SOUND AND VIBRATION, 1997, 208 (05) : 763 - 776
  • [28] Spectral Asymptotics of Laplacians Associated with One-dimensional Iterated Function Systems with Overlaps
    Ngai, Sze-Man
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2011, 63 (03): : 648 - 688
  • [29] GEOMETRIC ENTANGLEMENT OF ONE-DIMENSIONAL SYSTEMS: BOUNDS AND SCALINGS IN THE THERMODYNAMIC LIMIT
    Orus, Roman
    Wei, Tzu-Chieh
    QUANTUM INFORMATION & COMPUTATION, 2011, 11 (7-8) : 563 - 573
  • [30] Surface Impedance and Bulk Band Geometric Phases in One-Dimensional Systems
    Xiao, Meng
    Zhang, Z. Q.
    Chan, C. T.
    PHYSICAL REVIEW X, 2014, 4 (02):