AN EXTENSION OF NEWTON-KANTOROVIC METHOD FOR SOLVING NONLINEAR EQUATIONS WITH AN APPLICATION TO ELASTICITY

被引:27
|
作者
ANSELONE, PM
MOORE, RH
机构
关键词
D O I
10.1016/0022-247X(66)90043-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
引用
收藏
页码:476 / &
相关论文
共 50 条
  • [31] Solving system of nonlinear integral equations by Newton-Kantorovich method
    Hameed, Hameed Husam
    Eshkuvatov, Z. K.
    Muminov, Z.
    Kilicman, Adem
    PROCEEDINGS OF THE 21ST NATIONAL SYMPOSIUM ON MATHEMATICAL SCIENCES (SKSM21): GERMINATION OF MATHEMATICAL SCIENCES EDUCATION AND RESEARCH TOWARDS GLOBAL SUSTAINABILITY, 2014, 1605 : 518 - 523
  • [32] A QUASI-GAUSS-NEWTON METHOD FOR SOLVING NONLINEAR ALGEBRAIC EQUATIONS
    WANG, H
    TEWARSON, RP
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 1993, 25 (01) : 53 - 63
  • [33] NEW QUASI-NEWTON METHOD FOR SOLVING SYSTEMS OF NONLINEAR EQUATIONS
    Luksan, Ladislav
    Vlcek, Jan
    APPLICATIONS OF MATHEMATICS, 2017, 62 (02) : 121 - 134
  • [34] An extension of the decomposition method for solving nonlinear equations and its convergence
    Jiao, Yong-Chang
    Dang, Chuangyin
    Yamamoto, Yoshitsugu
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2008, 55 (04) : 760 - 775
  • [35] EXTENSION OF AN ITERATIVE METHOD FOR SOLVING STRONGLY NONLINEAR STIFFNESS EQUATIONS
    MA, C
    BESDO, D
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1989, 69 (04): : T214 - T217
  • [36] AN EVOLUTIONARY NEWTON PROCEDURE FOR SOLVING NONLINEAR EQUATIONS
    ZHANLAV, T
    PUZYNIN, IV
    COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 1992, 32 (01) : 1 - 9
  • [37] A regularized Newton method for monotone nonlinear equations and its application
    Fan, Jinyan
    Yuan, Yaxiang
    OPTIMIZATION METHODS & SOFTWARE, 2014, 29 (01): : 102 - 119
  • [38] Solving nonlinear equations with the Newton-Krylov method based on automatic differentiation
    Xu, Wei
    Coleman, Thomas F.
    OPTIMIZATION METHODS & SOFTWARE, 2014, 29 (01): : 88 - 101
  • [39] A parameterized multi-step Newton method for solving systems of nonlinear equations
    Fayyaz Ahmad
    Emran Tohidi
    Juan A. Carrasco
    Numerical Algorithms, 2016, 71 : 631 - 653
  • [40] A composite third order Newton-Steffensen method for solving nonlinear equations
    Sharma, JR
    APPLIED MATHEMATICS AND COMPUTATION, 2005, 169 (01) : 242 - 246