THE INFLUENCE OF AEROSOL-PARTICLE COMPOSITION ON CLOUD DROPLET FORMATION

被引:44
|
作者
HALLBERG, A
OGREN, JA
NOONE, KJ
OKADA, K
HEINTZENBERG, J
SVENNINGSSON, IB
机构
[1] METEOROL RES INST,TSUKUBA,IBARAKI 305,JAPAN
[2] LUND UNIV,DEPT NUCL PHYS,S-22362 LUND,SWEDEN
关键词
PARTITIONING; SULFUR; ELEMENTAL CARBON; NUCLEATION SCAVENGING; SINGLE PARTICLE ANALYSIS;
D O I
10.1007/BF00696587
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
A difference in partitioning between cloud droplets and interstitial air for two chemical species (elemental carbon and sulphur) with different expected behaviour in nucleation scavenging was observed in clouds at Mt. Kleiner Feldberg (825 m asl), near Frankfurt, Germany. The fraction of sulphur incorporated in cloud droplets was always higher than the fraction of elemental carbon. This difference in partitioning has also been observed in fog but under different pollution conditions in the Po Valley, Italy. Both these studies were based on bulk samples. In the present study at Kleiner Feldberg, impactor samples of the particles in the interstitial air and the cloud droplet residuals were taken and a single particle analysis was done on the samples. It was found that, for a given particle size, the majority of particles forming cloud droplets were soluble and that insoluble particles preferentially remained in the interstitial air.
引用
收藏
页码:153 / 171
页数:19
相关论文
共 50 条
  • [1] The influence of aerosol particle composition on cloud droplet formation
    Hallberg, A., 1600, Kluwer Academic Publishers (19): : 1 - 2
  • [2] Influence of dust composition on cloud droplet formation
    Kelly, James T.
    Chuang, Catherine C.
    Wexler, Anthony S.
    ATMOSPHERIC ENVIRONMENT, 2007, 41 (14) : 2904 - 2916
  • [3] AEROSOL-PARTICLE ANALYZER
    WYATT, PJ
    SCHEHRER, KL
    PHILLIPS, SD
    JACKSON, C
    CHANG, YJ
    PARKER, RG
    PHILLIPS, DT
    BOTTIGER, JR
    APPLIED OPTICS, 1988, 27 (02): : 217 - 221
  • [4] Influence of the component composition of extinguishing fluids on the droplet distribution in an aerosol cloud
    Kuznetsov, G., V
    Kropotova, S. S.
    Voytkov, I. S.
    Strizhak, P. A.
    POWDER TECHNOLOGY, 2022, 395 : 838 - 849
  • [5] MECHANISMS OF AEROSOL-PARTICLE DEPOSITION
    HEYDER, J
    CHEST, 1981, 80 (06) : 820 - 823
  • [6] EXPERIMENTAL STUDIES ON AEROSOL-PARTICLE FORMATION BY SULFUR-DIOXIDE
    KASAHARA, M
    TAKAHASHI, K
    ATMOSPHERIC ENVIRONMENT, 1976, 10 (06) : 475 - 486
  • [7] OPTICAL BISTABILITY OF AN AEROSOL-PARTICLE
    ARNOLD, S
    LEUNG, KM
    PLUCHINO, A
    OPTICS LETTERS, 1986, 11 (12) : 800 - 802
  • [8] SINGLE AEROSOL-PARTICLE STUDIES
    DAVIS, EJ
    RAVINDRAN, P
    RAY, AK
    ADVANCES IN COLLOID AND INTERFACE SCIENCE, 1981, 15 (01) : 1 - 24
  • [9] Evaluation of global simulations of aerosol particle and cloud condensation nuclei number, with implications for cloud droplet formation
    Fanourgakis, George S.
    Kanakidou, Maria
    Nenes, Athanasios
    Bauer, Susanne E.
    Bergman, Tommi
    Carslaw, Ken S.
    Grini, Alf
    Hamilton, Douglas S.
    Johnson, Jill S.
    Karydis, Vlassis A.
    Kirkevag, Alf
    Kodros, John K.
    Lohmann, Ulrike
    Luo, Gan
    Makkonen, Risto
    Matsui, Hitoshi
    Neubauer, David
    Pierce, Jeffrey R.
    Schmale, Julia
    Stier, Philip
    Tsigaridis, Kostas
    van Noije, Twan
    Wang, Hailong
    Watson-Parris, Duncan
    Westervelt, Daniel M.
    Yang, Yang
    Yoshioka, Masaru
    Daskalakis, Nikos
    Decesari, Stefano
    Gysel-Beer, Martin
    Kalivitis, Nikos
    Liu, Xiaohong
    Mahowald, Natalie M.
    Myriokefalitakis, Stelios
    Schrodner, Roland
    Sfakianaki, Maria
    Tsimpidi, Alexandra P.
    Wu, Mingxuan
    Yu, Fangqun
    ATMOSPHERIC CHEMISTRY AND PHYSICS, 2019, 19 (13) : 8591 - 8617
  • [10] A METHOD FOR AEROSOL-PARTICLE CHARGE MEASUREMENTS
    KRUPA, A
    JAWOREK, A
    JOURNAL OF ELECTROSTATICS, 1989, 23 : 283 - 292