Directed Random Dot Product Graphs

被引:10
|
作者
Young, Stephen J. [1 ]
Scheinerman, Edward [2 ]
机构
[1] Georgia Inst Technol, Sch Math, 686 Cherry St, Atlanta, GA 30332 USA
[2] Johns Hopkins Univ, Whiting Sch Engn, Baltimore, MD 21218 USA
关键词
D O I
10.1080/15427951.2008.10129301
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this paper we consider three models for random graphs that utilize the inner product as their fundamental object. We analyze the behavior of these models with respect to clustering, the small world property, and degree distribution. These models are motivated by the random dot product graphs developed by Kraetzl, Nickel, and Scheinerman. We extend their results to fully parameterize the conditions under which clustering occurs, characterize the diameter of graphs generated by these models, and describe the behavior of the degree distribution.
引用
下载
收藏
页码:91 / 111
页数:21
相关论文
共 50 条
  • [11] Popularity Adjusted Block Models are Generalized Random Dot Product Graphs
    Koo, John
    Tang, Minh
    Trosset, Michael W.
    JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2023, 32 (01) : 131 - 144
  • [12] Gradient-Based Spectral Embeddings of Random Dot Product Graphs
    Fiori, Marcelo
    Marenco, Bernardo
    Larroca, Federico
    Bermolen, Paola
    Mateos, Gonzalo
    IEEE TRANSACTIONS ON SIGNAL AND INFORMATION PROCESSING OVER NETWORKS, 2024, 10 : 1 - 16
  • [13] Link prediction in dynamic networks using random dot product graphs
    Sanna Passino, Francesco (f.sannapassino@imperial.ac.uk), 1600, Springer (35):
  • [14] Dot product representations of graphs
    Fiduccia, CM
    Scheinerman, ER
    Trenk, A
    Zito, JS
    DISCRETE MATHEMATICS, 1998, 181 (1-3) : 113 - 138
  • [15] Bipartite dot product graphs
    Bailey, Sean
    Brown, David
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS- COMPUTER SYSTEMS THEORY, 2020, 5 (03) : 148 - 158
  • [16] Change point localization in dependent dynamic nonparametric random dot product graphs
    Padilla, Oscar Hernan Madrid
    Yu, Yi
    Priebe, Carey E.
    Journal of Machine Learning Research, 2022, 23
  • [17] Consistent Latent Position Estimation and Vertex Classification for Random Dot Product Graphs
    Sussman, Daniel L.
    Minh Tang
    Priebe, Carey E.
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2014, 36 (01) : 48 - 57
  • [18] Dot product dimensions of graphs
    Li, Bo-Jr
    Chang, Gerard Jennhwa
    DISCRETE APPLIED MATHEMATICS, 2014, 166 : 159 - 163
  • [19] Change point localization in dependent dynamic nonparametric random dot product graphs
    Padilla, Oscar Hernan Madrid
    Yu, Yi
    Priebe, Carey E.
    JOURNAL OF MACHINE LEARNING RESEARCH, 2022, 23
  • [20] A central limit theorem for an omnibus embedding of multiple random dot product graphs
    Levin, Keith
    Athreya, Avanti
    Tang, Minh
    Lyzinski, Vince
    Priebe, Carey E.
    2017 17TH IEEE INTERNATIONAL CONFERENCE ON DATA MINING WORKSHOPS (ICDMW 2017), 2017, : 964 - 967