In a famous paper [8] Hammersley investigated the length L(n) of the longest increasing subsequence of a random n-permutation. Implicit in that paper is a certain one-dimensional continuous-space interacting particle process. By studying a hydrodynamical limit for Hammersley's process we show by fairly ''soft'' arguments that lim n(-1/2)EL(n) = 2. This is a known result, but previous proofs [14, 11] relied on hard analysis of combinatorial asymptotics.
机构:
Tokyo Med & Dent Univ, M&D Data Sci Ctr, Tokyo, JapanTokyo Med & Dent Univ, M&D Data Sci Ctr, Tokyo, Japan
Bannai, Hideo
Tomohiro, I.
论文数: 0引用数: 0
h-index: 0
机构:
Kyushu Inst Technol, Dept Artificial Intelligence, Iizuka, JapanTokyo Med & Dent Univ, M&D Data Sci Ctr, Tokyo, Japan
Tomohiro, I.
Koeppl, Dominik
论文数: 0引用数: 0
h-index: 0
机构:
Tokyo Med & Dent Univ, M&D Data Sci Ctr, Tokyo, Japan
Univ Munster, Dept Comp Sci, Munster, GermanyTokyo Med & Dent Univ, M&D Data Sci Ctr, Tokyo, Japan