HAMMERSLEYS INTERACTING PARTICLE PROCESS AND LONGEST INCREASING SUBSEQUENCES

被引:129
|
作者
ALDOUS, D [1 ]
DIACONIS, P [1 ]
机构
[1] HARVARD UNIV,DEPT MATH,CAMBRIDGE,MA 02138
关键词
Mathematics Subject Classification (1979): 60C05; 60K35;
D O I
10.1007/BF01204214
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In a famous paper [8] Hammersley investigated the length L(n) of the longest increasing subsequence of a random n-permutation. Implicit in that paper is a certain one-dimensional continuous-space interacting particle process. By studying a hydrodynamical limit for Hammersley's process we show by fairly ''soft'' arguments that lim n(-1/2)EL(n) = 2. This is a known result, but previous proofs [14, 11] relied on hard analysis of combinatorial asymptotics.
引用
收藏
页码:199 / 213
页数:15
相关论文
共 50 条
  • [1] LONGEST INCREASING AND DECREASING SUBSEQUENCES
    SCHENSTED, C
    CANADIAN JOURNAL OF MATHEMATICS, 1961, 13 (02): : 179 - &
  • [2] Number of longest increasing subsequences
    Krabbe, Phil
    Schawe, Hendrik
    Hartmann, Alexander K.
    PHYSICAL REVIEW E, 2020, 101 (06)
  • [3] LIL for the Length of the Longest Increasing Subsequences
    Su, Zhong-gen
    ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2020, 36 (02): : 283 - 293
  • [4] Longest Increasing Subsequences and Log Concavity
    Bona, Miklos
    Lackner, Marie-Louise
    Sagan, Bruce E.
    ANNALS OF COMBINATORICS, 2017, 21 (04) : 535 - 549
  • [5] LIL for the Length of the Longest Increasing Subsequences
    Zhong-gen SU
    Acta Mathematicae Applicatae Sinica, 2020, 36 (02) : 283 - 293
  • [6] LIL for the Length of the Longest Increasing Subsequences
    Zhong-gen Su
    Acta Mathematicae Applicatae Sinica, English Series, 2020, 36 : 283 - 293
  • [7] The Preisach graph and longest increasing subsequences
    Ferrari, Patrik L.
    Mungan, Muhittin
    Terzi, M. Mert
    ANNALES DE L INSTITUT HENRI POINCARE D, 2022, 9 (04): : 643 - 657
  • [8] Longest increasing subsequences in sliding windows
    Albert, MH
    Golynski, A
    Hamel, AM
    López-Ortiz, A
    Rao, SS
    Safari, MA
    THEORETICAL COMPUTER SCIENCE, 2004, 321 (2-3) : 405 - 414
  • [9] COMPUTING LENGTH OF LONGEST INCREASING SUBSEQUENCES
    FREDMAN, ML
    DISCRETE MATHEMATICS, 1975, 11 (01) : 29 - 35
  • [10] Longest Increasing Subsequences and Log Concavity
    Miklós Bóna
    Marie-Louise Lackner
    Bruce E. Sagan
    Annals of Combinatorics, 2017, 21 : 535 - 549