OPTIMAL SUPERHEDGING UNDER NON-CONVEX CONSTRAINTS - A BSDE APPROACH

被引:2
|
作者
Bender, Christian [1 ]
Kohlmann, Michael [2 ]
机构
[1] TU Braunschweig, Inst Math Stochast, Pockelsstr 14, D-38106 Braunschweig, Germany
[2] Univ Konstanz, Dept Math, D-78457 Constance, Germany
关键词
BSDE; constraints; penalization; superhedging; Monte Carlo simulation;
D O I
10.1142/S0219024908004841
中图分类号
F8 [财政、金融];
学科分类号
0202 ;
摘要
We apply theoretical results by Peng on supersolutions for Backward SDEs (BSDEs) to the problem of finding optimal superhedging strategies in a generalized Black-Scholes market under constraints. Constraints may be imposed simultaneously on wealth process and portfolio. They may be non-convex, time-dependent, and random. The BSDE method turns out to be an extremely useful tool for modeling realistic markets: in this paper, it is shown how more realistic constraints on the portfolio may be formulated via BSDE theory in terms of the amount of money invested, the portfolio proportion, or the number of shares held. Based on recent advances on numerical methods for BSDEs (in particular, the forward scheme by Bender and Denk [1]), a Monte Carlo method for approximating the superhedging price is given, which demonstrates the practical applicability of the BSDE method. Some numerical examples concerning European and American options under non-convex borrowing constraints are presented.
引用
收藏
页码:363 / 380
页数:18
相关论文
共 50 条
  • [21] A Non-Convex Variational Approach to Photometric Stereo under Inaccurate Lighting
    Queau, Yvain
    Wu, Tao
    Lauze, Francois
    Durou, Jean-Denis
    Cremers, Daniel
    30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, : 350 - 359
  • [22] Differentially Private Non-Convex Optimization under the KL Condition with Optimal Rates
    Menart, Michael
    Ullah, Enayat
    Arora, Raman
    Bassily, Raef
    Guzman, Cristobal
    INTERNATIONAL CONFERENCE ON ALGORITHMIC LEARNING THEORY, VOL 237, 2024, 237
  • [23] Non-Convex Feedback Optimization With Input and Output Constraints
    Haberle, Verena
    Hauswirth, Adrian
    Ortmann, Lukas
    Bolognani, Saverio
    Dorfler, Florian
    IEEE CONTROL SYSTEMS LETTERS, 2021, 5 (01): : 343 - 348
  • [24] Explicit predictive control with non-convex polyhedral constraints
    Perez, Emilio
    Arino, Carlos
    Xavier Blasco, F.
    Martinez, Miguel A.
    AUTOMATICA, 2012, 48 (02) : 419 - 424
  • [25] Nesting of non-convex figures in non-convex contours
    Vinade, C.
    Dias, A.
    Informacion Tecnologica, 2000, 11 (01): : 149 - 156
  • [26] Global regularity of optimal mappings in non-convex domains
    Shibing Chen
    Jiakun Liu
    Xu-Jia Wang
    Science China Mathematics, 2019, 62 : 2057 - 2072
  • [27] STOCHASTIC PROBLEMS OF OPTIMAL CONTROL WITH NON-CONVEX LIMITATION
    ABASHEV, FK
    KATS, IY
    PRIKLADNAYA MATEMATIKA I MEKHANIKA, 1974, 38 (03): : 409 - 416
  • [28] Global regularity of optimal mappings in non-convex domains
    Shibing Chen
    Jiakun Liu
    Xu-Jia Wang
    Science China(Mathematics), 2019, 62 (11) : 2057 - 2072
  • [29] Global regularity of optimal mappings in non-convex domains
    Chen, Shibing
    Liu, Jiakun
    Wang, Xu-Jia
    SCIENCE CHINA-MATHEMATICS, 2019, 62 (11) : 2057 - 2072
  • [30] An existence result for non-convex optimal control problems
    Carlota, Clara
    Chá, Sílvia
    WSEAS Transactions on Systems and Control, 2014, 9 : 687 - 697