DERIVATION OF STOCHASTIC EQUATIONS FOR NONEQUILIBRIUM ISING MEAN FIELD MODEL

被引:33
|
作者
METIU, H [1 ]
KITAHARA, K [1 ]
ROSS, J [1 ]
机构
[1] MIT,DEPT CHEM,CAMBRIDGE,MA 02139
来源
JOURNAL OF CHEMICAL PHYSICS | 1975年 / 63卷 / 12期
关键词
D O I
10.1063/1.431319
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
引用
收藏
页码:5116 / 5125
页数:10
相关论文
共 50 条
  • [21] NONEQUILIBRIUM CRITICAL EXPONENTS IN THE RANDOM-FIELD ISING-MODEL
    VILLAIN, J
    PHYSICAL REVIEW LETTERS, 1984, 52 (17) : 1543 - 1546
  • [22] The Derivation of Ergodic Mean Field Game Equations for Several Populations of Players
    Ermal Feleqi
    Dynamic Games and Applications, 2013, 3 : 523 - 536
  • [23] Stochastic Control for Mean-Field Stochastic Partial Differential Equations with Jumps
    Dumitrescu, Roxana
    Oksendal, Bernt
    Sulem, Agnes
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2018, 176 (03) : 559 - 584
  • [24] Stochastic Control for Mean-Field Stochastic Partial Differential Equations with Jumps
    Roxana Dumitrescu
    Bernt Øksendal
    Agnès Sulem
    Journal of Optimization Theory and Applications, 2018, 176 : 559 - 584
  • [25] DYNAMICS OF THE SPIN-1 ISING MEAN FIELD MODEL
    BATTEN, GL
    LEMBERG, HL
    JOURNAL OF CHEMICAL PHYSICS, 1979, 70 (06): : 2934 - 2945
  • [26] Limit Theorems for the Cubic Mean-Field Ising Model
    Contucci, Pierluigi
    Mingione, Emanuele
    Osabutey, Godwin
    ANNALES HENRI POINCARE, 2024, 25 (11): : 5019 - 5044
  • [27] ON THE MICROSCOPIC APPROACH OF THE MEAN FIELD KINETIC ISING-MODEL
    BOEGLIN, A
    ZHANG, XG
    LIN, SH
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 1986, 137 (1-2) : 439 - 453
  • [28] Nonequilibrium phase transition in the kinetic Ising model: Existence of a tricritical point and stochastic resonance
    Acharyya, M
    PHYSICAL REVIEW E, 1999, 59 (01): : 218 - 221
  • [29] Origin of mean-field behavior in an elastic Ising model
    Frechette, Layne B.
    Dellago, Christoph
    Geissler, Phillip L.
    PHYSICAL REVIEW B, 2020, 102 (02)
  • [30] Analytical solution of the mean field Ising model for finite systems
    Bertoldi, Dalia S.
    Bringa, Eduardo M.
    Miranda, E. N.
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2012, 24 (22)