A Parallel Algorithm for Gene Expressing Data Biclustering

被引:0
|
作者
Liu Wei [1 ]
Chen Ling [2 ,3 ]
机构
[1] Nanjing Univ Aeronaut & Astronaut, Inst Informat Sci & Technol, Nanjing, Jiangsu, Peoples R China
[2] Yangzhou Univ, Dept Comp Sci, Yangzhou, Jiangsu, Peoples R China
[3] Nanjing Univ, Natl Key Lab Novel Software Technol, Nanjing, Jiangsu, Peoples R China
关键词
bioinformatics; biclustering; gene expression data;
D O I
暂无
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Biclustering of the gene expressing data is an important task in bioinformatics. By clustering the gene expressing data obtained under different experimental conditions, function and regulatory elements of the gene sequence can be analyzed and recognized. A parallel biclustering algorithm for gene expressing data is presented. Based on the anti-monotones property of the quality of the data sets with their sizes, the algorithm starts from the data sets containing of all the 2*2 submatrices of the gene expressing data matrix, and gets the final biclusters by gradually adding columns and rows on the data sets. Experimental results show that our algorithm has superiority over other similar algorithms in terms of processing speedup and quality of clustering and efficiency.
引用
收藏
页码:71 / 77
页数:7
相关论文
共 50 条
  • [21] Exact biclustering algorithm for the analysis of large gene expression data sets
    Oliver Voggenreiter
    Stefan Bleuler
    Wilhelm Gruissem
    [J]. BMC Bioinformatics, 13 (Suppl 18)
  • [22] An Overlapping Control-Biclustering Algorithm from Gene Expression Data
    Nepomuceno, Juan A.
    Troncoso, Alicia
    Aguilar-Ruiz, Jesus S.
    [J]. 2009 9TH INTERNATIONAL CONFERENCE ON INTELLIGENT SYSTEMS DESIGN AND APPLICATIONS, 2009, : 1239 - +
  • [23] Biclustering On Gene Expression Data
    Shruthi, M. P.
    [J]. 2017 INTERNATIONAL CONFERENCE ON ALGORITHMS, METHODOLOGY, MODELS AND APPLICATIONS IN EMERGING TECHNOLOGIES (ICAMMAET), 2017,
  • [24] KMeans Greedy Search Hybrid Algorithm for Biclustering Gene Expression Data
    Das, Shyama
    Idicula, Sumam Mary
    [J]. ADVANCES IN COMPUTATIONAL BIOLOGY, 2010, 680 : 181 - 188
  • [25] Implementation of Parallel K-Means Algorithm for Two-Phase Method Biclustering in Carcinoma Tumor Gene Expression Data
    Ardaneswari, Gianinna
    Bustamam, Alhadi
    Siswantining, Titin
    [J]. SYMPOSIUM ON BIOMATHEMATICS (SYMOMATH 2016), 2017, 1825
  • [26] HiBi - The Algorithm of Biclustering the Discrete Data
    Michalak, Marcin
    Lachor, Magdalena
    Polanski, Andrzej
    [J]. ARTIFICIAL INTELLIGENCE AND SOFT COMPUTING, ICAISC 2014, PT II, 2014, 8468 : 760 - 771
  • [27] runibic: a Bioconductor package for parallel row-based biclustering of gene expression data
    Orzechowski, Patryk
    Panszczyk, Artur
    Huang, Xiuzhen
    Moore, Jason H.
    [J]. BIOINFORMATICS, 2018, 34 (24) : 4302 - 4304
  • [28] A New Biclustering Algorithm for Time-Series Gene Expression Data Analysis
    Xue, Yun
    Liao, Zhengling
    Li, Meihang
    Luo, Jie
    Hu, Xiaohui
    Luo, Guiyin
    Chen, Wen-Sheng
    [J]. 2014 TENTH INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND SECURITY (CIS), 2014, : 268 - 272
  • [29] Improving an Evolutionary Multi-objective Algorithm for the Biclustering of Gene Expression Data
    Brizuela, Carlos A.
    Luna-Taylor, Jorge E.
    Martinez-Perez, Israel
    Guillen, Hugo A.
    Rodriguez, David O.
    Beltran-Verdugo, Armando
    [J]. 2013 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2013, : 221 - 228
  • [30] ARBic: an all-round biclustering algorithm for analyzing gene expression data
    Liu, Xiangyu
    Yu, Ting
    Zhao, Xiaoyu
    Long, Chaoyi
    Han, Renmin
    Su, Zhengchang
    Li, Guojun
    [J]. NAR GENOMICS AND BIOINFORMATICS, 2023, 5 (01)