SCHOLZ-BRAUER PROBLEM IN ADDITION CHAINS

被引:0
|
作者
GIOIA, AA
SUBBARAO, MV
机构
[1] WESTERN MICHIGAN UNIV,KALAMAZOO,MI 49001
[2] UNIV ALBERTA,EDMONTON T6G 2G1,ALBERTA,CANADA
来源
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
引用
收藏
页码:A63 / A64
页数:2
相关论文
共 50 条
  • [21] On a generalization of addition chains: Addition-multiplication chains
    Bahig, Hatem M.
    [J]. DISCRETE MATHEMATICS, 2008, 308 (04) : 611 - 616
  • [22] Addition of Brauer classes via Picard schemes
    Ma, Qixiao
    [J]. JOURNAL OF ALGEBRA, 2022, 589 : 105 - 113
  • [23] Some properties of nonstar steps in addition chains and new cases where the Scholz conjecture is true (vol 42, pg 304, 2002)
    Bahig, HM
    Nakamula, K
    [J]. JOURNAL OF ALGORITHMS, 2003, 47 (01) : 60 - 61
  • [24] ON ADDITION CHAINS
    TSAI, YH
    CHIN, YH
    [J]. INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 1992, 45 (3-4) : 145 - 160
  • [25] ADDITION CHAINS
    VEGH, E
    [J]. NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1975, 22 (01): : A2 - A3
  • [26] On Brauer's k(B)-problem
    Robinson, GR
    Thompson, JG
    [J]. JOURNAL OF ALGEBRA, 1996, 184 (03) : 1143 - 1160
  • [27] Heuristics for minimum brauer chain problem
    Gelgi, Fatih
    Onus, Melih
    [J]. COMPUTER AND INFORMATION SCIENCES - ISCIS 2006, PROCEEDINGS, 2006, 4263 : 47 - +
  • [28] ON ONE BRAUER,R. PROBLEM
    STRUNKOV, SP
    [J]. DOKLADY AKADEMII NAUK SSSR, 1990, 310 (01): : 36 - 37
  • [29] A solution to Brauer?s Problem 14
    Murray, John
    Sambale, Benjamin
    [J]. JOURNAL OF ALGEBRA, 2023, 621 : 87 - 91
  • [30] ON VECTORIAL ADDITION CHAINS
    OLIVOS, J
    [J]. JOURNAL OF ALGORITHMS, 1981, 2 (01) : 13 - 21