NONPARAMETRIC METHODS WITH APPLICATIONS TO HEDONIC MODELS

被引:35
|
作者
PACE, RK
机构
[1] School of Management, University of Alaska, Fairbanks, 99775, Alaska
来源
关键词
NONPARAMETRIC REGRESSION; KERNEL ESTIMATOR; GRID METHOD; HEDONIC PRICING; MASS ASSESSMENT;
D O I
10.1007/BF01096965
中图分类号
F8 [财政、金融];
学科分类号
0202 ;
摘要
Current real estate statistical valuation involves the estimation of parameters within a posited specification. Such parametric estimation requires judgment concerning model (1) variables; and (2) functional form. In contrast, nonparametric regression estimation requires attention to (1) but permits greatly reduced attention to (2). Parametric estimators functionally model the parameters and variables affecting E(y\x) while nonparametric estimators directly model pdf(y, x) and hence E(y\x). This article applies the kernel nonparametric regression estimator to two different data sets and specifications. The article shows the nonparametric estimator outperforms the standard parametric estimator (OLS) across variable transformations and across data subsets differing in quality. In addition, the article reviews properties of nonparametric estimators, presents the history of nonparametric estimators in real estate, and discusses a representation of the kernel estimator as a nonparametric grid method.
引用
收藏
页码:185 / 204
页数:20
相关论文
共 50 条
  • [21] NONPARAMETRIC-ESTIMATION OF DYNAMIC HEDONIC PRICE MODELS AND THE CONSTRUCTION OF RESIDENTIAL HOUSING PRICE INDEXES
    MEESE, R
    WALLACE, N
    [J]. AREUEA JOURNAL-JOURNAL OF THE AMERICAN REAL ESTATE & URBAN ECONOMICS ASSOCIATION, 1991, 19 (03): : 308 - 332
  • [22] Nonparametric methods for estimating periodic functions, with applications in astronomy
    Hall, Peter
    [J]. COMPSTAT 2008: PROCEEDINGS IN COMPUTATIONAL STATISTICS, 2008, : 3 - 18
  • [23] Nonparametric least squares methods for stochastic frontier models
    Simar, Leopold
    Van Keilegom, Ingrid
    Zelenyuk, Valentin
    [J]. JOURNAL OF PRODUCTIVITY ANALYSIS, 2017, 47 (03) : 189 - 204
  • [24] A comparison of different nonparametric methods for inference on additive models
    Dette, H
    Wilkau, CVU
    Sperlich, S
    [J]. JOURNAL OF NONPARAMETRIC STATISTICS, 2005, 17 (01) : 57 - 81
  • [25] Nonparametric prediction for univariate spatial data: Methods and applications
    Arancibia, Rodrigo Garcia
    Llop, Pamela
    Lovatto, Mariel
    [J]. PAPERS IN REGIONAL SCIENCE, 2023, 102 (03) : 635 - +
  • [26] Nonparametric least squares methods for stochastic frontier models
    Léopold Simar
    Ingrid Van Keilegom
    Valentin Zelenyuk
    [J]. Journal of Productivity Analysis, 2017, 47 : 189 - 204
  • [27] Development of Methods for Nonparametric Identification of Models of Mechanical Systems
    Volkova, Viktorija
    [J]. MODERN BUILDING MATERIALS, STRUCTURES AND TECHNIQUES, 2013, 57 : 1230 - 1235
  • [28] Goodness-of-Fit Methods for Nonparametric IRT Models
    Sijtsma, Klaas
    Straat, J. Hendrik
    van der Ark, L. Andries
    [J]. QUANTITATIVE PSYCHOLOGY RESEARCH, 2015, 140 : 109 - 120
  • [29] Comparison of nonparametric methods in nonlinear mixed effects models
    Antic, J.
    Laffont, C. M.
    Chafai, D.
    Concordet, D.
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2009, 53 (03) : 642 - 656
  • [30] Alternative EM methods for nonparametric finite mixture models
    Pilla, RS
    Lindsay, BG
    [J]. BIOMETRIKA, 2001, 88 (02) : 535 - 550