Q-DEFORMED CLASSICAL LIE-ALGEBRAS AND THEIR ANYONIC REALIZATION

被引:13
|
作者
FRAU, M
RMONTEIRO, MA
SCIUTO, S
机构
[1] UNIV TURIN,DIPARTIMENTO FIS TEOR,I-10125 TURIN,ITALY
[2] CNPQ,CBPF,BR-22290 RIO JANEIRO,RJ,BRAZIL
来源
关键词
D O I
10.1088/0305-4470/27/3/022
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
All classical Lie algebras can be realized a la Schwinger in terms of fermionic oscillators. We show that the same can be done for their q-deformed counterparts by simply replacing the fermionic oscillators with anyonic ones defined on a two-dimensional lattice. The deformation parameter q is a phase related to the anyonic statistical parameter. A crucial role in this construction is played by a sort of bosonization formula which gives the generators of the quantum algebras in terms of the undeformed ones. The entire procedure works even on one-dimensional chains; in such a case q can also be real.
引用
收藏
页码:801 / 816
页数:16
相关论文
共 50 条
  • [31] q-deformed Araki-Woods algebras
    Hiai, F
    [J]. OPERATOR ALGEBRAS AND MATHEMATICAL PHYSICS, CONFERENCE PROCEEDINGS, 2003, : 169 - 202
  • [32] ON REPRESENTATIONS OF THE Q-DEFORMED LORENTZ AND POINCARE ALGEBRAS
    PILLIN, M
    WEIKL, L
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1994, 27 (16): : 5525 - 5540
  • [33] Knot polynomials from q-deformed algebras
    Smithies, CR
    Butler, PH
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1996, 29 (19): : 6413 - 6428
  • [34] Interpolating statistics and q-deformed oscillator algebras
    Swamy, PN
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2006, 20 (06): : 697 - 713
  • [35] Braided chains of q-deformed Heisenberg algebras
    Fiore, G
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1998, 31 (23): : 5289 - 5298
  • [36] ON MASAS IN q-DEFORMED VON NEUMANN ALGEBRAS
    Caspers, Martijn
    Skalski, Adam
    Wasilewski, Mateusz
    [J]. PACIFIC JOURNAL OF MATHEMATICS, 2019, 302 (01) : 1 - 21
  • [37] INDUCED CONJUGACY CLASSES IN CLASSICAL LIE-ALGEBRAS
    KEMPKEN, G
    [J]. ABHANDLUNGEN AUS DEM MATHEMATISCHEN SEMINAR DER UNIVERSITAT HAMBURG, 1983, 53 : 53 - 83
  • [38] LIE-ALGEBRAS AND DIFFEOMORPHISM GROUPS FOR CLASSICAL STRUCTURES
    LICHNEROWICZ, A
    [J]. COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1973, 276 (16): : 1113 - 1118
  • [39] ON THE DECOMPOSITION OF THE TENSOR ALGEBRA OF THE CLASSICAL LIE-ALGEBRAS
    HANLON, P
    [J]. ADVANCES IN MATHEMATICS, 1985, 56 (03) : 238 - 282
  • [40] OBSTRUCTIONS TO MODULAR CLASSICAL SIMPLE LIE-ALGEBRAS
    BERMAN, S
    WILSON, RL
    [J]. DUKE MATHEMATICAL JOURNAL, 1981, 48 (01) : 109 - 120