Rough Fractional Multilinear Integral Operators on Generalized Weighted Morrey Spaces

被引:0
|
作者
Akbulut, A. [1 ]
Hamzayev, V. H. [2 ,3 ]
Safarov, Z. V. [2 ]
机构
[1] Ahi Evran Univ, Dept Math, Kirsehir, Turkey
[2] NASA, Inst Math & Mech, Baku, Azerbaijan
[3] Nakhchivan Teacher Training Inst, Nakhchivan, Azerbaijan
来源
AZERBAIJAN JOURNAL OF MATHEMATICS | 2016年 / 6卷 / 02期
关键词
fractional multilinear integral; rough kernel; BMO; generalized weighted Morrey space;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we study the boundedness of fractional multilinear integral operators with rough kernels T-Omega,alpha(A,m) on the generalized weighted Morrey spaces M-p,M-phi(w). We find the sufficient conditions on the pair (phi(1), phi(2)) with w is an element of A(p)(R-n) which ensures the boundedness of the operators T-Omega,alpha(A,m) from M-p,M-phi 1 (w) to M-p,M-phi 2 (w) for 1 < p < infinity. In all cases the conditions for the boundedness of the operator T-Omega,alpha(A,m) is given in terms of Zygmund-type integral inequalities on (phi(1), phi(2)) and w, which do not assume any assumption on monotonicity of phi(1) (x, r), phi(2) (x, r) in r.
引用
收藏
页码:128 / 142
页数:15
相关论文
共 50 条