KINETICS OF THE GAS-SLURRY METHANOL-HIGHER ALCOHOL SYNTHESIS FROM CO/CO2/H-2 OVER A CS-CU/ZNO/AL2O3 CATALYST, INCLUDING SIMULTANEOUS FORMATION OF METHYL-ESTERS AND HYDROCARBONS

被引:29
|
作者
BREMAN, BB [1 ]
BEENACKERS, AACM [1 ]
SCHUURMAN, HA [1 ]
OESTERHOLT, E [1 ]
机构
[1] UNIV GRONINGEN, DEPT CHEM ENGN, 9747 AG GRONINGEN, NETHERLANDS
关键词
D O I
10.1016/0920-5861(95)00097-Y
中图分类号
O69 [应用化学];
学科分类号
081704 ;
摘要
First kinetic results are presented for the gas-slurry methanol-higher alcohol synthesis from CO/CO2/H-2 (syngas) over a CU0.44Zn0.43Al0.12Cs0.031 catalyst (particle size: 50-75 mu m), slurried in n-octacosane. Experimental conditions varied as follows: pressure = 20-80 bar, temperature = 473-573 K, H-2/CO ratio in the feed = 0.53-3.38, mole fraction CO2 in the feed = 0.026-0.037 and space velocity = 0.065 X 10(-3)-1.395 X 10(-3) Nm(3) s(-1) kg(cat)(-1). Methanol was the major product. Further, higher 1-alcohols, 2-methyl-1-alcohols, methyl esters, n-paraffins, CO2 and H2O were formed. In contrast to observations in a gas-solid system, formation of 2-methyl-n-paraffins was negligible. From the same model, proposed earlier for the gas-solid systems B.B. Breeman et al., Chem. Eng. Sci., 49, 24A (1995), the product distributions of the alcohols, the paraffins and the methyl esters could be predicted with average relative deviations of 5.9%, 7.8% and 1.6%, respectively. The presence of n-octacosane as a slurry liquid appeared to affect substantially both the product distributions and the values of the model parameters relative to the corresponding gas-solid system.
引用
收藏
页码:5 / 14
页数:10
相关论文
共 50 条
  • [41] Development of an Efficient Methanol Production Process for Direct CO2 Hydrogenation over a Cu/ZnO/Al2O3 Catalyst
    Samimi, Fereshteh
    Rahimpour, Mohammad Reza
    Shariati, Ali
    CATALYSTS, 2017, 7 (11)
  • [42] A new method of low-temperature methanol synthesis on Cu/ZnO/Al2O3 catalysts from CO/CO2/H2
    Yang, Ruiqin
    Yu, Xiaocai
    Zhang, Yi
    Li, Wenze
    Tsubaki, Noritatsu
    FUEL, 2008, 87 (4-5) : 443 - 450
  • [43] Higher Alcohol Synthesis over a K-Promoted Co2O3/CuO/ZnO/Al2O3 Catalyst
    Ismail Boz
    Catalysis Letters, 2003, 87 : 187 - 194
  • [44] Higher alcohol synthesis over a K-promoted Co2O3/CuO/ZnO/Al2O3 catalyst
    Boz, I
    CATALYSIS LETTERS, 2003, 87 (3-4) : 187 - 194
  • [45] Methanol synthesis from CO2 hydrogenation over Cu/γ-Al2O3 catalysts modified by ZnO, ZrO2 and MgO
    Ren, Hong
    Xu, Cheng-Hua
    Zhao, Hao-Yang
    Wang, Ya-Xue
    Liu, Jie
    Liu, Jian-Ying
    JOURNAL OF INDUSTRIAL AND ENGINEERING CHEMISTRY, 2015, 28 : 261 - 267
  • [46] Direct synthesis of formic acid via CO2 hydrogenation over Cu/ZnO/Al2O3 catalyst
    Chiang, Chao-Lung
    Lin, Kuen-Song
    Chuang, Hui-Wen
    JOURNAL OF CLEANER PRODUCTION, 2018, 172 : 1957 - 1977
  • [48] Effect of hydrothermal environment on Cu-ZnO/Al2O3 catalyst for hydrogenation of CO2 to methanol
    Li, Jin
    Guo, Qing
    Zhao, Xu
    Hu, Yongke
    Zhang, Shizhong
    Zhao, Yu
    Li, Shaozhong
    MOLECULAR CATALYSIS, 2023, 549
  • [49] Cu/ZnO/Al2O3 Catalyst Promoted with Amorphous MgO for Enhanced CO2 Hydrogenation to Methanol
    Chen, Hecao
    Xie, Shangzhi
    Jiang, Zhaocong
    Xu, Jing
    Zhu, Minghui
    CHEMCATCHEM, 2025,
  • [50] Cu/ZnO/Al2O3 Catalyst Modulated by Zirconia with Enhanced Performance in CO2 Hydrogenation to Methanol
    Li, Hangjie
    Wang, Liang
    Gao, Xinhua
    Xiao, Feng-Shou
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2022, 61 (29) : 10446 - 10454