Bayesian residual analysis for binary response regression models

被引:32
|
作者
Albert, J [1 ]
Chib, S [1 ]
机构
[1] WASHINGTON UNIV,JOHN M OLIN SCH BUSINESS,ST LOUIS,MO 63130
关键词
data augmentation; Gibbs sampling; latent data; outlier; simulation;
D O I
10.2307/2337342
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
In a binary response regression model, classical residuals are difficult to define and interpret due to the discrete nature of the response variable. In contrast, Bayesian residuals have continuous-valued posterior distributions which can be graphed to learn about outlying observations. Two definitions of Bayesian residuals are proposed for binary regression data. Plots of the posterior distributions of the basic 'observed-fitted' residuals can be helpful in outlier detection. Alternatively, the notion of a tolerance random variable can be used to define latent data residuals that are functions of the tolerance random variables and the parameters. In the probit setting, these residuals are attractive in that a priori they are a sample from a standard normal distribution, and therefore the corresponding posterior distributions are easy to interpret. These residual definitions are illustrated in examples and contrasted with classical outlier detection methods for binary data.
引用
收藏
页码:747 / 759
页数:13
相关论文
共 50 条
  • [21] Bayesian sensitivity analysis in elliptical linear regression models
    Arellano-Valle, RB
    Galea-Rojas, M
    Zuazola, PI
    [J]. JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2000, 86 (01) : 175 - 199
  • [22] Bayesian analysis in multivariate regression models with conjugate priors
    Arashi, M.
    Iranmanesh, Anis
    Norouzirad, M.
    Jenatabadi, Hashem Salarzadeh
    [J]. STATISTICS, 2014, 48 (06) : 1324 - 1334
  • [23] BAYESIAN-ANALYSIS OF SWITCHING REGRESSION-MODELS
    LUBRANO, M
    [J]. JOURNAL OF ECONOMETRICS, 1985, 29 (1-2) : 69 - 95
  • [24] Objective Bayesian analysis for exponential power regression models
    Salazar, Esther
    Ferreira, Marco A. R.
    Migon, Helio S.
    [J]. SANKHYA-SERIES B-APPLIED AND INTERDISCIPLINARY STATISTICS, 2012, 74 (01): : 107 - 125
  • [25] Bayesian subgroup analysis in regression using mixture models
    Im, Yunju
    Tan, Aixin
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2021, 162
  • [26] Bayesian inference for semiparametric binary regression
    Newton, MA
    Czado, C
    Chappell, R
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1996, 91 (433) : 142 - 153
  • [27] Bayesian lasso binary quantile regression
    Dries F. Benoit
    Rahim Alhamzawi
    Keming Yu
    [J]. Computational Statistics, 2013, 28 : 2861 - 2873
  • [28] Bayesian lasso binary quantile regression
    Benoit, Dries F.
    Alhamzawi, Rahim
    Yu, Keming
    [J]. COMPUTATIONAL STATISTICS, 2013, 28 (06) : 2861 - 2873
  • [29] Instrument Assisted Regression for Errors in Variables Models with Binary Response
    Xu, Kun
    Ma, Yanyuan
    Wang, Liqun
    [J]. SCANDINAVIAN JOURNAL OF STATISTICS, 2015, 42 (01) : 104 - 117
  • [30] Commentary: Regression residual vs. Bayesian analysis of medicinal floras
    Moerman, Daniel E.
    [J]. JOURNAL OF ETHNOPHARMACOLOGY, 2012, 139 (03) : 693 - 694