Image database categorisation using robust modelling of finite generalised Dirichlet mixture

被引:0
|
作者
Ben Ismail, M. Maher [1 ]
Frigui, H. [1 ]
机构
[1] Univ Louisville, CECS Dept, Multimedia Res Lab, Louisville, KY 40292 USA
关键词
unsupervised learning; mixture models; feature weighting; generalised Dirichlet mixture; image database categorisation;
D O I
10.1504/IJSISE.2012.047787
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We propose a novel image database categorisation approach using Robust Modelling of finite Generalised Dirichlet Mixture (RM-GDM). The proposed algorithm is based on optimising an objective function that associates two types of memberships with each data sample. The first one is the posterior probability and indicates how well a sample fits each estimated distribution. The second membership represents the degree of typicality and is used to identify and discard noise points and outliers. These properties make RM-GDM suitable for noisy and high-dimensional feature spaces. We use the RM-GDM to categorise a large collection of colour images. Its performance is illustrated and compared to similar algorithms.
引用
收藏
页码:143 / 153
页数:11
相关论文
共 50 条
  • [31] Unsupervised Learning Using Variational Inference on Finite Inverted Dirichlet Mixture Models with Component Splitting
    Kamal Maanicshah
    Manar Amayri
    Nizar Bouguila
    Wentao Fan
    [J]. Wireless Personal Communications, 2021, 119 : 1817 - 1844
  • [32] Data Clustering Using Variational Learning of Finite Scaled Dirichlet Mixture Models with Component Splitting
    Hieu Nguyen
    Maanicshah, Kamal
    Azam, Muhammad
    Bouguila, Nizar
    [J]. IMAGE ANALYSIS AND RECOGNITION (ICIAR 2019), PT II, 2019, 11663 : 117 - 128
  • [33] Robust mixture decomposition via maximization of trimmed log-likelihood with application to image database organization
    Medasani, S
    Krishnapuram, R
    [J]. 1998 CONFERENCE OF THE NORTH AMERICAN FUZZY INFORMATION PROCESSING SOCIETY - NAFIPS, 1998, : 237 - 241
  • [34] A ROBUST NONSYMMETRIC STUDENT'S-T FINITE MIXTURE MODEL FOR MR IMAGE SEGMENTATION
    Pan, Xu
    Zhu, Hongqing
    Xie, Qunyi
    [J]. 2015 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2015, : 1830 - 1834
  • [35] Robust mixture modelling using multivariate t-distribution with missing information
    Wang, HX
    Zhang, QB
    Luo, B
    Wei, S
    [J]. PATTERN RECOGNITION LETTERS, 2004, 25 (06) : 701 - 710
  • [36] Robust variable selection in finite mixture of regression models using the t distribution
    Dai, Lin
    Yin, Junhui
    Xie, Zhengfen
    Wu, Liucang
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2019, 48 (21) : 5370 - 5386
  • [37] A hybrid SEM algorithm for high-dimensional unsupervised learning using a finite generalized dirichlet mixture
    Bouguila, Nizar
    Ziou, Djemel
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2006, 15 (09) : 2657 - 2668
  • [38] A Lightweight Intrusion Detection System Using a Finite Dirichlet Mixture Model With Extended Stochastic Variational Inference
    Lai, Yuping
    Yu, Yiying
    Guan, Wenbo
    Luo, Lijuan
    Fan, Jing
    Zhou, Nanrun
    Ping, Yuan
    [J]. IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, 2024, 21 (04): : 4701 - 4712
  • [39] Robust simultaneous positive data clustering and unsupervised feature selection using generalized inverted Dirichlet mixture models
    Al Mashrgy, Mohamed
    Bdiri, Taoufik
    Bouguila, Nizar
    [J]. KNOWLEDGE-BASED SYSTEMS, 2014, 59 : 182 - 195
  • [40] Identifying latent subgroups of children with developmental delay using Bayesian sequential updating and Dirichlet process mixture modelling
    Gilholm, Patricia
    Mengersen, Kerrie
    Thompson, Helen
    [J]. PLOS ONE, 2020, 15 (06):