FORBIDDEN MINORS CHARACTERIZATION OF PARTIAL 3-TREES

被引:65
|
作者
ARNBORG, S [1 ]
PROSKUROWSKI, A [1 ]
CORNEIL, DG [1 ]
机构
[1] UNIV TORONTO,DEPT COMP SCI,TORONTO M5S 1A4,ONTARIO,CANADA
基金
加拿大自然科学与工程研究理事会;
关键词
D O I
10.1016/0012-365X(90)90292-P
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A k-tree is formed from a k-complete graph by recursively adding a vertex adjacent to all vertices in an existing k-complete subgraph. The many applications of partial k-trees (subgraphs of k-trees) have motivated their study from both the algorithmic and theoretical points of view. In this paper we characterize the class of partial 3-trees by its set of four minimal forbidden minors (H is a minor of G if H can be obtained from G by a finite sequence of edge-extraction and edge-contradiction operations.). © 1990.
引用
收藏
页码:1 / 19
页数:19
相关论文
共 50 条
  • [21] Queue Layouts of Planar 3-Trees
    Jawaherul Md. Alam
    Michael A. Bekos
    Martin Gronemann
    Michael Kaufmann
    Sergey Pupyrev
    Algorithmica, 2020, 82 : 2564 - 2585
  • [22] PLANE 3-TREES: EMBEDDABILITY AND APPROXIMATION
    Durocher, Stephane
    Mondal, Debajyoti
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2015, 29 (01) : 405 - 420
  • [23] A FORBIDDEN MINOR CHARACTERIZATION AND RELIABILITY OF A CLASS OF PARTIAL 4-TREES
    LINGNER, GT
    POLITOF, T
    SATYANARAYANA, A
    NETWORKS, 1995, 25 (03) : 139 - 146
  • [24] THE 3-TREES TEST IN THE PUBLIC-SCHOOL
    CORBOZ, RJ
    GNOS, PU
    ACTA PAEDOPSYCHIATRICA, 1980, 46 (1-2) : 83 - 92
  • [25] A GEOMETRIC APPROACH TO FORBIDDEN MINORS FOR GF(3)
    KAHN, J
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 1984, 37 (01) : 1 - 12
  • [26] Point-set embeddings of plane 3-trees
    Nishat, Rahnuma Islam
    Mondal, Debajyoti
    Rahman, Md. Saidur
    COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS, 2012, 45 (03): : 88 - 98
  • [27] Point-Set Embeddings of Plane 3-Trees
    Nishat, Rahnuma Islam
    Mondal, Debajyoti
    Rahman, Md. Saidur
    GRAPH DRAWING, 2011, 6502 : 317 - 328
  • [28] Drawing planar 3-trees with given face areas
    Biedl, Therese
    Velazquez, Lesvia Elena Ruiz
    COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS, 2013, 46 (03): : 276 - 285
  • [29] Visibility Drawings of Plane 3-Trees with Minimum Area
    Nishat R.I.
    Mondal D.
    Rahman M.S.
    Mathematics in Computer Science, 2011, 5 (1) : 119 - 132
  • [30] The size of minimum 3-trees: Case 2 mod 3
    Arocha, JL
    Tey, J
    BOLETIN DE LA SOCIEDAD MATEMATICA MEXICANA, 2002, 8 (01): : 1 - 4