NON-AVERAGING SETS, DIMENSION AND POROSITY

被引:1
|
作者
FORAN, J [1 ]
机构
[1] UNIV MISSOURI,KANSAS CITY,MO 64110
关键词
D O I
10.4153/CMB-1986-011-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
引用
收藏
页码:60 / 63
页数:4
相关论文
共 50 条
  • [21] Non-uniform porosity for a subset of some Julia sets
    Roth, KA
    Complex Dynamics, 2006, 396 : 153 - 168
  • [22] MULTIVARIABLE AVERAGING ON SPARSE SETS
    Lavictoire, P.
    Parrish, A.
    Rosenblatt, J.
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2014, 366 (06) : 2975 - 3025
  • [23] Dimension of the harmonic measure of non-homogeneous Cantor sets
    Batakis, Athanasios
    ANNALES DE L INSTITUT FOURIER, 2006, 56 (06) : 1617 - 1631
  • [24] Dimension of some non-normal continued fraction sets
    Liao, Lingmin
    Ma, Jihua
    Wang, Baowei
    MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 2008, 145 : 215 - 225
  • [25] Generalized mean porosity and dimension
    Nieminen, T
    ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 2006, 31 (01) : 143 - 172
  • [26] Hausdorff Dimension and mean porosity
    Pekka Koskela
    Steffen Rohde
    Mathematische Annalen, 1997, 309 : 593 - 609
  • [27] Hausdorff Dimension and mean porosity
    Koskela, P
    Rohde, S
    MATHEMATISCHE ANNALEN, 1997, 309 (04) : 593 - 609
  • [28] Fractal Percolation, Porosity, and Dimension
    Changhao Chen
    Tuomo Ojala
    Eino Rossi
    Ville Suomala
    Journal of Theoretical Probability, 2017, 30 : 1471 - 1498
  • [29] Fractal Percolation, Porosity, and Dimension
    Chen, Changhao
    Ojala, Tuomo
    Rossi, Eino
    Suomala, Ville
    JOURNAL OF THEORETICAL PROBABILITY, 2017, 30 (04) : 1471 - 1498
  • [30] On the dimension of additive sets
    Candela, P.
    Helfgott, H. A.
    ACTA ARITHMETICA, 2015, 167 (01) : 91 - 100