On Six-Parameter Frechet Distribution: Properties and Applications

被引:0
|
作者
Yousof, Haitham M. [1 ]
Afify, Ahmed Z. [1 ]
Ebraheim, Abd El Hadi N. [2 ]
Hamedani, G. G. [3 ]
Butt, Nadeem Shafique [4 ]
机构
[1] Benha Univ, Dept Stat Math & Insurance, Banha, Egypt
[2] Cairo Univ, Inst Stat Studies & Res, Cairo, Egypt
[3] Marquette Univ, Dept Math Stat & Comp Sci, Milwaukee, WI 53233 USA
[4] King Abdulaziz Univ, Dept Family & Community Med, Jeddah, Saudi Arabia
关键词
Moments of residual life; Goodness-of-fit; Order Statistics; Maximum Likelihood Estimation;
D O I
暂无
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper introduces a new generalization of the transmuted Marshall-Olkin Frechet distribution of Afify et al. (2015), using Kumaraswamy generalized family. The new model is referred to as Kumaraswamy transmuted Marshall-Olkin Frechet distribution. This model contains sixty two sub-models as special cases such as the Kumaraswamy transmuted Frechet, Kumaraswamy transmuted Marshall-Olkin, generalized inverse Weibull and Kumaraswamy Gumbel type II distributions, among others. Various mathematical properties of the proposed distribution including closed forms for ordinary and incomplete moments, quantile and generating functions and Renyi and eta-entropies are derived. The unknown parameters of the new distribution are estimated using the maximum likelihood estimation. We illustrate the importance of the new model by means of two applications to real data sets.
引用
收藏
页码:281 / 299
页数:19
相关论文
共 50 条
  • [21] The Rayleigh and Courant variational principles in the six-parameter shell theory
    Eremeyev, Victor A.
    Lebedev, Leonid P.
    Cloud, Michael J.
    MATHEMATICS AND MECHANICS OF SOLIDS, 2015, 20 (07) : 806 - 822
  • [22] A six-parameter statistical model of the Earth's magnetic field
    Walker, AD
    Backus, GE
    GEOPHYSICAL JOURNAL INTERNATIONAL, 1997, 130 (03) : 693 - 700
  • [23] A six-parameter model to predict ash formation in a CFB boiler
    Yang, HR
    Wirsum, M
    Yue, GX
    Fett, FN
    Xu, YN
    POWDER TECHNOLOGY, 2003, 134 (1-2) : 117 - 122
  • [24] Actual developments in the nonlinear shell theory - state of the art and new applications of the six-parameter shell theory
    Altenbach, H.
    Eremeyev, V. A.
    SHELL STRUCTURES: THEORY AND APPLICATIONS, VOL 3, 2014, : 3 - 12
  • [25] A New Six-Parameter Model Based on Chebyshev Polynomials for Solar Cells
    Lun, Shu-xian
    Sang, Jing-shu
    Guo, Ting-ting
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2015, 2015
  • [26] Six-parameter DC GaAs FET model for nonlinear circuit simulation
    Cao, J
    Lin, F
    Kooi, PS
    Leong, MS
    ELECTRONICS LETTERS, 1997, 33 (21) : 1825 - 1827
  • [27] A novel six-parameter assay for comprehensive phenotyping of circulating tumor cells
    Liu, M. C.
    Sun, Y.
    Ramirez, A.
    Campton, D.
    George, T.
    Haselkorn, K. E.
    Clein, A.
    Gadi, V.
    Sabath, D.
    Kaldjian, E.
    CANCER RESEARCH, 2019, 79 (04)
  • [28] Six-parameter electrical model for photovoltaic cell/module with compound parabolic concentrator
    Li, W.
    Paul, M. C.
    Sellami, N.
    Sweet, T.
    Montecucco, A.
    Siviter, J.
    Baig, H.
    Gao, M.
    Mallick, T.
    Knox, A.
    SOLAR ENERGY, 2016, 137 : 551 - 563
  • [29] Harmonic Mixture Frechet Distribution: Properties and Applications to Lifetime Data
    Ocloo, Selasi Kwaku
    Brew, Lewis
    Nasiru, Suleman
    Odoi, Benjamin
    INTERNATIONAL JOURNAL OF MATHEMATICS AND MATHEMATICAL SCIENCES, 2022, 2022
  • [30] Applications of the Frechet distribution function
    Harlow, DG
    INTERNATIONAL JOURNAL OF MATERIALS & PRODUCT TECHNOLOGY, 2002, 17 (5-6): : 482 - 495