ORTHOGONAL POLYNOMIAL EXPANSION OF THE SPECTRAL DENSITY OPERATOR AND THE CALCULATION OF BOUND-STATE ENERGIES AND EIGENFUNCTIONS

被引:101
|
作者
ZHU, W
HUANG, YH
KOURI, DJ
CHANDLER, C
HOFFMAN, DK
机构
[1] UNIV HOUSTON,DEPT PHYS,HOUSTON,TX 77204
[2] UNIV NEW MEXICO,DEPT PHYS & ASTRON,ALBUQUERQUE,NM 87131
[3] IOWA STATE UNIV,DEPT CHEM,AMES,IA 50011
[4] IOWA STATE UNIV,AMES LAB,AMES,IA 50011
基金
美国国家科学基金会;
关键词
D O I
10.1016/0009-2614(93)E1345-H
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
An orthogonal polynomial expansion method is presented, and illustrated with calculations, for calculating delta(E-H), the spectral density operator (SDO), the projection operator that projects out of any L(2) wavepacket the eigenstate(s) of H having energy E. If applied to an L(2) wavepacket which overlaps the interaction, it yields either scattering-type (improper) eigenstates or proper bound eigenstates. For negative energies, the exact SDO yields zero away from an eigenvalue, and yields the energy eigenstate (times a constant) when E equals an eigenvalue. The finite orthogonal polynomial expansion of the SDO, acting on an L(2) wavepacket, yields approximately zero for E not equal to an eigenvalue, and becomes nonzero in the neighborhood of an eigenvalue.
引用
收藏
页码:73 / 79
页数:7
相关论文
共 50 条
  • [41] Two-Orthogonal Polynomial Sequences as Eigenfunctions of a Third-Order Differential Operator
    Augusta Mesquita, T.
    Maroni, P.
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2016, 13 (02) : 687 - 701
  • [42] The Jacobi eigenfunctions and the quantum mechanical hypervirial theorems method for bound-state problems
    Liolios, TE
    Grypeos, ME
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1997, 30 (10): : L325 - L330
  • [43] Convergence of the Spectral Expansion in the Eigenfunctions of a Fourth-Order Differential Operator
    Kurbanov, V. M.
    Godzhaeva, Kh. R.
    DIFFERENTIAL EQUATIONS, 2019, 55 (01) : 8 - 23
  • [44] BOUND-STATE ENERGIES FOR THE EXPONENTIAL COSINE SCREENED COULOMB POTENTIAL
    IKHDAIR, SM
    SEVER, R
    ZEITSCHRIFT FUR PHYSIK D-ATOMS MOLECULES AND CLUSTERS, 1993, 28 (01): : 1 - 5
  • [45] Scalar vertex operator for bound-state QED in the Coulomb gauge
    Holmberg, Johan
    PHYSICAL REVIEW A, 2011, 84 (06):
  • [46] The covariant-evolution-operator method in bound-state QED
    Lindgren, I
    Salomonson, S
    Åsén, B
    PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2004, 389 (04): : 161 - 261
  • [47] COMPOUND ATOM STATE IN NEON BOUND-STATE CALCULATION OF RESONANCE ENERGY
    FOGLIA, C
    NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B, 1972, B 10 (01): : 348 - &
  • [48] CALCULATION OF A BOUND-STATE WAVEFUNCTION USING FREE STATE WAVEFUNCTIONS ONLY
    BROWNSTEIN, KR
    AMERICAN JOURNAL OF PHYSICS, 1975, 43 (02) : 173 - 176
  • [49] ASYMPTOTIC-EXPANSION OF THE STATE DENSITY AND THE SPECTRAL-FUNCTION OF A HILL OPERATOR
    SHENK, D
    SHUBIN, MA
    MATHEMATICS OF THE USSR-SBORNIK, 1985, 128 (3-4): : 473 - 490
  • [50] Calculation of Dynamical Response Functions Using a Bound-State Method
    Walet, Niels R.
    Singh, Jagjit
    Kirscher, Johannes
    Birse, Michael C.
    Griesshammer, Harald W.
    McGovern, Judith A.
    FEW-BODY SYSTEMS, 2023, 64 (03)