ORTHOGONAL POLYNOMIAL EXPANSION OF THE SPECTRAL DENSITY OPERATOR AND THE CALCULATION OF BOUND-STATE ENERGIES AND EIGENFUNCTIONS

被引:101
|
作者
ZHU, W
HUANG, YH
KOURI, DJ
CHANDLER, C
HOFFMAN, DK
机构
[1] UNIV HOUSTON,DEPT PHYS,HOUSTON,TX 77204
[2] UNIV NEW MEXICO,DEPT PHYS & ASTRON,ALBUQUERQUE,NM 87131
[3] IOWA STATE UNIV,DEPT CHEM,AMES,IA 50011
[4] IOWA STATE UNIV,AMES LAB,AMES,IA 50011
基金
美国国家科学基金会;
关键词
D O I
10.1016/0009-2614(93)E1345-H
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
An orthogonal polynomial expansion method is presented, and illustrated with calculations, for calculating delta(E-H), the spectral density operator (SDO), the projection operator that projects out of any L(2) wavepacket the eigenstate(s) of H having energy E. If applied to an L(2) wavepacket which overlaps the interaction, it yields either scattering-type (improper) eigenstates or proper bound eigenstates. For negative energies, the exact SDO yields zero away from an eigenvalue, and yields the energy eigenstate (times a constant) when E equals an eigenvalue. The finite orthogonal polynomial expansion of the SDO, acting on an L(2) wavepacket, yields approximately zero for E not equal to an eigenvalue, and becomes nonzero in the neighborhood of an eigenvalue.
引用
收藏
页码:73 / 79
页数:7
相关论文
共 50 条