UNIVERSALITY OF GROWTH RULES IN FRACTAL GROWTH

被引:16
|
作者
DEANGELIS, R [1 ]
MARSILI, M [1 ]
PIETRONERO, L [1 ]
VESPIGNANI, A [1 ]
WIESMANN, HJ [1 ]
机构
[1] ASEA BROWN BOVERI CORP RES,CH-5405 BADEN,SWITZERLAND
来源
EUROPHYSICS LETTERS | 1991年 / 16卷 / 05期
关键词
D O I
10.1209/0295-5075/16/5/001
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider the problem of the universality of growth rules in fractal-growth models and introduce a theoretical scheme that allows us to address this question. In particular we show that growth defined per site and rules that include diagonal process renormalize asymptotically into effective growth rules of simple bond type. Therefore, we identify the general nature of the asymptotic, scale-invariant growth dynamics for coarse-grained variables.
引用
收藏
页码:417 / 422
页数:6
相关论文
共 50 条
  • [1] Fractal dimension and universality in avascular tumor growth
    Ribeiro, Fabiano L.
    dos Santos, Renato Vieira
    Mata, Angelica S.
    [J]. PHYSICAL REVIEW E, 2017, 95 (04)
  • [2] Universality and scale invariant dynamics in laplacian fractal growth
    Cafiero, R
    Vespignani, A
    Zapperi, S
    Pietronero, L
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 1997, 11 (30): : 3595 - 3619
  • [3] SCALE-INVARIANT DYNAMICS AND UNIVERSALITY CLASSES IN LAPLACIAN FRACTAL GROWTH
    Vespignani, A.
    Pietronero, L.
    [J]. FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 1993, 1 (04) : 1002 - 1007
  • [4] FRACTAL GROWTH
    SANDER, LM
    [J]. SCIENTIFIC AMERICAN, 1987, 256 (01) : 94 - 100
  • [5] Universality in Stochastic Exponential Growth
    Iyer-Biswas, Srividya
    Crooks, Gavin E.
    Scherer, Norbert F.
    Dinner, Aaron R.
    [J]. PHYSICAL REVIEW LETTERS, 2014, 113 (02)
  • [6] Memory and Universality in Interface Growth
    De Nardis, Jacopo
    Le Doussal, Pierre
    Takeuchi, Kazumasa A.
    [J]. PHYSICAL REVIEW LETTERS, 2017, 118 (12)
  • [7] THEORY OF FRACTAL GROWTH
    PIETRONERO, L
    [J]. PHYSICA A, 1990, 163 (01): : 316 - 324
  • [8] THEORY OF FRACTAL GROWTH
    PIETRONERO, L
    ERZAN, A
    EVERTSZ, C
    [J]. PHYSICAL REVIEW LETTERS, 1988, 61 (07) : 861 - 864
  • [9] THEORY OF FRACTAL GROWTH
    PIETRONERO, L
    [J]. PHYSICA SCRIPTA, 1989, T25 : 230 - 230
  • [10] Growth condition and growth limit for Fractal super fibers and fractal super tubes
    Yin, Ya-Jun
    Yang, Fan
    Zhang, Tong
    Fan, Qin-Shan
    [J]. INTERNATIONAL JOURNAL OF NONLINEAR SCIENCES AND NUMERICAL SIMULATION, 2008, 9 (01) : 97 - 102