Memory and Universality in Interface Growth

被引:28
|
作者
De Nardis, Jacopo [1 ]
Le Doussal, Pierre [2 ]
Takeuchi, Kazumasa A. [3 ]
机构
[1] PSL Res Univ, CNRS, Ecole Normale Super, Dept Phys, 24 rue Lhomond, F-75005 Paris, France
[2] PSL Res Univ, Ecole Normale Super, CNRS LPTENS, 24 rue Lhomond, F-75005 Paris, France
[3] Tokyo Inst Technol, Dept Phys, Meguro Ku, 2-12-1 Ookayama, Tokyo 1528551, Japan
基金
日本学术振兴会; 美国国家科学基金会;
关键词
GROWING INTERFACES; 1+1 DIMENSIONS; BETHE-ANSATZ; FREE-ENERGY; DISTRIBUTIONS; FLUCTUATIONS; EQUILIBRIUM; SYSTEMS; POLYMER;
D O I
10.1103/PhysRevLett.118.125701
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Recently, very robust universal properties have been shown to arise in one-dimensional growth processes with local stochastic rules, leading to the Kardar-Parisi-Zhang (KPZ) universality class. Yet it has remained essentially unknown how fluctuations in these systems correlate at different times. Here, we derive quantitative predictions for the universal form of the two-time aging dynamics of growing interfaces and we show from first principles the breaking of ergodicity that the KPZ time evolution exhibits. We provide corroborating experimental observations on a turbulent liquid crystal system, as well as a numerical simulation of the Eden model, and we demonstrate the universality of our predictions. These results may give insight into memory effects in a broader class of far-from-equilibrium systems.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] UNIVERSALITY CLASS OF INTERFACE GROWTH WITH REFLECTION SYMMETRY
    DEVILLARD, P
    SPOHN, H
    [J]. JOURNAL OF STATISTICAL PHYSICS, 1992, 66 (3-4) : 1089 - 1099
  • [2] UNIVERSALITY CLASSES FOR INTERFACE GROWTH WITH QUENCHED DISORDER
    AMARAL, LAN
    BARABASI, AL
    STANLEY, HE
    [J]. PHYSICAL REVIEW LETTERS, 1994, 73 (01) : 62 - 65
  • [3] Universality classes for self-similarity of noiseless multidimensional Burgers turbulence and interface growth
    Gurbatov, SN
    [J]. PHYSICAL REVIEW E, 2000, 61 (03) : 2595 - 2604
  • [4] Ballistic deposition with memory: A new universality class of surface growth with a new scaling law
    Roman, Ahmed
    Zhu, Ruomin
    Nemenman, Ilya
    [J]. PHYSICAL REVIEW RESEARCH, 2024, 6 (03):
  • [5] UNIVERSALITY OF GROWTH RULES IN FRACTAL GROWTH
    DEANGELIS, R
    MARSILI, M
    PIETRONERO, L
    VESPIGNANI, A
    WIESMANN, HJ
    [J]. EUROPHYSICS LETTERS, 1991, 16 (05): : 417 - 422
  • [6] Locality and universality of quantum memory effects
    B.-H. Liu
    S. Wißmann
    X.-M. Hu
    C. Zhang
    Y.-F. Huang
    C.-F. Li
    G.-C. Guo
    A. Karlsson
    J. Piilo
    H.-P. Breuer
    [J]. Scientific Reports, 4
  • [7] Reversible Logic Elements with Memory and Their Universality
    Morita, Kenichi
    [J]. ELECTRONIC PROCEEDINGS IN THEORETICAL COMPUTER SCIENCE, 2013, (128): : 3 - 14
  • [8] Locality and universality of quantum memory effects
    Liu, B. -H.
    Wissmann, S.
    Hu, X. -M.
    Zhang, C.
    Huang, Y. -F.
    Li, C. -F.
    Guo, G. -C.
    Karlsson, A.
    Piilo, J.
    Breuer, H. -P.
    [J]. SCIENTIFIC REPORTS, 2014, 4
  • [9] Universality in sandpiles, interface depinning, and earthquake models
    Paczuski, M
    Boettcher, S
    [J]. PHYSICAL REVIEW LETTERS, 1996, 77 (01) : 111 - 114
  • [10] Universality of effective central charge in interface CFTs
    Andreas Karch
    Yuya Kusuki
    Hirosi Ooguri
    Hao-Yu Sun
    Mianqi Wang
    [J]. Journal of High Energy Physics, 2023