Some group II introns can undergo a protein-independent splicing reaction with the basic reaction pathway similar to nuclear pre-mRNA splicing and the catalytic functions of some of the structural components have been determined. To identify further functional domains, we have generated an ensemble of partial and complete deletions of domains I, II, III and IV of the self-splicing group II intron bI1 from yeast mitochondria and studied their effects on the splicing reaction in vitro. Our results indicate that domains II and IV, which vary considerably in length and structure among group II introns, do not play a direct role in catalysis but mainly help to ensure the proper interaction between upstream and downstream catalytically active structural elements. Deletions of sub-domains of domain I and domain III indicate that these elements are involved in 5′ cleavage by hydrolysis and in a reaction in trans (exon reopening), and that this function can be inhibited without affecting the normal 5′ cleavage by transesterification. Yet, we infer that the helical structures affected by the mutational alterations might not contribute to this reaction mode per se but that changes within local secondary structures perturb the internal conformation of the ribozyme. Furthermore, we have designed an abbreviated version of intron bI1, with a length of 542 nucleotides, which is still catalytically active. © 1990.