NONPERTURBATIVE GAUGE THEORETIC TREATMENT OF 2-PARTICLE SCATTERING IN (2+1)-DIMENSIONAL GRAVITY

被引:2
|
作者
FALBOKENKEL, MK
MANSOURI, F
机构
关键词
D O I
10.1142/S0217732392001920
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
By a suitable choice of phase space variables, which is natural for the reduction of a two-body problem, we couple two sources to the Chern-Simons-Witten action and obtain the exact two-body Hamiltonian. For particles of (nearly) equal mass and of small momenta, the Hamiltonian reduces to that of 't Hooft. In the corresponding geometry, when viewed froin a particular frame, the relative coordinate moves on a cone of deficit angle equal to the classical Hamiltonian.
引用
收藏
页码:2173 / 2178
页数:6
相关论文
共 50 条
  • [21] RELATIVISTIC 2-PARTICLE SCATTERING
    SCHIERHOLZ, G
    [J]. NUCLEAR PHYSICS B, 1968, B 7 (04) : 432 - +
  • [22] (2+1) gravity on Riemann surfaces in conformal gauge
    Valtancoli, P
    [J]. CLASSICAL AND QUANTUM GRAVITY, 1997, 14 (07) : 1795 - 1809
  • [23] Higher gauge theory and gravity in 2+1 dimensions
    Mann, R. B.
    Popescu, E. M.
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2007, 22 (28): : 5155 - 5172
  • [24] (2+1)-GRAVITY WITH MOVING PARTICLES IN AN INSTANTANEOUS GAUGE
    BELLINI, A
    CIAFALONI, M
    VALTANCOLI, P
    [J]. NUCLEAR PHYSICS B, 1995, 454 (1-2) : 449 - 463
  • [25] OBSERVABLES, GAUGE-INVARIANCE, AND TIME IN (2+1)-DIMENSIONAL QUANTUM-GRAVITY
    CARLIP, S
    [J]. PHYSICAL REVIEW D, 1990, 42 (08): : 2647 - 2654
  • [26] A NONPERTURBATIVE TREATMENT OF 2-DIMENSIONAL QUANTUM-GRAVITY
    GROSS, DJ
    MIGDAL, AA
    [J]. NUCLEAR PHYSICS B, 1990, 340 (2-3) : 333 - 365
  • [27] Gauge invariance of (2+1)-dimensional QED
    Tyutin, IV
    Zeitlin, VY
    [J]. PHYSICS OF ATOMIC NUCLEI, 1998, 61 (12) : 2165 - 2174
  • [28] RELATIVISTIC 2-PARTICLE SCATTERING .2.
    REDEI, LB
    [J]. ARKIV FOR FYSIK, 1965, 29 (01): : 11 - &
  • [29] ADM approach to 2+1 dimensional gravity
    Menotti, P
    Seminara, D
    [J]. NUCLEAR PHYSICS B-PROCEEDINGS SUPPLEMENTS, 2000, 88 : 132 - 141
  • [30] A formal analysis of (2+1)-dimensional gravity
    Engineer, S
    Srinivasan, K
    Padmanabhan, T
    [J]. ASTROPHYSICAL JOURNAL, 1999, 512 (01): : 1 - 8