Nitrogen and Carbon Cycling in a Grassland Community Ecosystem as Affected by Elevated Atmospheric CO2

被引:0
|
作者
Torbert, H. A. [1 ]
Polley, H. W. [2 ]
Johnson, H. B. [2 ]
机构
[1] USDA ARS, Natl Soil Dynam Lab, 411 S Donahue, Auburn, AL 36832 USA
[2] USDA ARS, Grassland Soil & Water Res Lab, Temple, TX 76502 USA
关键词
D O I
10.1155/2012/817343
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
Increasing global atmospheric carbon dioxide (CO2) concentration has led to concerns regarding its potential effects on terrestrial ecosystems and the long-term storage of carbon (C) and nitrogen (N) in soil. This study examined responses to elevated CO2 in a grass ecosystem invaded with a leguminous shrub Acacia farnesiana (L.) Willd (Huisache). Seedlings of Acacia along with grass species were grown for 13 months at CO2 concentrations of 385 (ambient), 690, and 980 mu mol mol(-1). Elevated CO2 increased both C and N inputs from plant growth which would result in higher soil C from litter fall, root turnover, and excretions. Results from the incubation indicated an initial (20 days) decrease in N mineralization which resulted in no change in C mineralization. However, after 40 and 60 days, an increase in both C and N mineralization was observed. These increases would indicate that increases in soil C storage may not occur in grass ecosystems that are invaded with Acacia over the long term.
引用
收藏
页数:5
相关论文
共 50 条
  • [41] Impacts of elevated atmospheric CO2 and temperature on plant community structure of a temperate grassland are modulated by cutting frequency
    Harmens, H
    Williams, PD
    Peters, SL
    Bambrick, MT
    Hopkins, A
    Ashenden, TW
    GRASS AND FORAGE SCIENCE, 2004, 59 (02) : 144 - 156
  • [42] Long-term response of the nematode community to elevated atmospheric CO2 in a temperate dry grassland soil
    Nagy, P.
    Bakonyi, G.
    Peli, E.
    Sonnemann, I.
    Tuba, Z.
    COMMUNITY ECOLOGY, 2008, 9 (Suppl 1) : 167 - 173
  • [43] Grassland species effects on soil CO2 flux track the effects of elevated CO2 and nitrogen
    Craine, JM
    Wedin, DA
    Reich, PB
    NEW PHYTOLOGIST, 2001, 150 (02) : 425 - 434
  • [44] Water relations in grassland and desert ecosystems exposed to elevated atmospheric CO2
    J. A. Morgan
    D. E. Pataki
    C. Körner
    H. Clark
    S. J. Del Grosso
    J. M. Grünzweig
    A. K. Knapp
    A. R. Mosier
    P. C. D. Newton
    P. A. Niklaus
    J. B. Nippert
    R. S. Nowak
    W. J. Parton
    H. W. Polley
    M. R. Shaw
    Oecologia, 2004, 140 : 11 - 25
  • [45] Water relations in grassland and desert ecosystems exposed to elevated atmospheric CO2
    Morgan, JA
    Pataki, DE
    Körner, C
    Clark, H
    Del Grosso, SJ
    Grünzweig, JM
    Knapp, AK
    Mosier, AR
    Newton, PCD
    Niklaus, PA
    Nippert, JB
    Nowak, RS
    Parton, WJ
    Polley, HW
    Shaw, MR
    OECOLOGIA, 2004, 140 (01) : 11 - 25
  • [46] Reduced water repellency of a grassland soil under elevated atmospheric CO2
    Newton, PCD
    Carran, RA
    Lawrence, EJ
    GLOBAL CHANGE BIOLOGY, 2004, 10 (01) : 1 - 4
  • [47] Potential nitrogen constraints on soil carbon sequestration under low and elevated atmospheric CO2
    Gill, RA
    Anderson, LJ
    Polley, HW
    Johnson, HB
    Jackson, RB
    ECOLOGY, 2006, 87 (01) : 41 - 52
  • [48] Does elevated atmospheric CO2 affect soil carbon burial and soil weathering in a forest ecosystem?
    Gonzalez-Meler, Miguel A.
    Poghosyan, Armen
    Sanchez-de Leon, Yaniria
    de Olivera, Eduardo Dias
    Norby, Richard J.
    Sturchio, Neil C.
    PEERJ, 2018, 6
  • [49] Carbon and nitrogen pools and mineralization in a grassland gley soil under elevated carbon dioxide at a natural CO2 spring
    Ross, DJ
    Tate, KR
    Newton, PCD
    Wilde, RH
    Clark, H
    GLOBAL CHANGE BIOLOGY, 2000, 6 (07) : 779 - 790
  • [50] Elevated CO2 and nitrogen addition affect the microbial abundance but not the community structure in salt marsh ecosystem
    Lee, Seung-Hoon
    Megonigal, Patrick J.
    Langley, Adam J.
    Kang, Hojeong
    APPLIED SOIL ECOLOGY, 2017, 117 : 129 - 136