A Domination Notion in Biform Games

被引:3
|
作者
Auriol, Iris [1 ]
Marchi, Ezio [2 ]
机构
[1] UNSL, RA-5700 San Luis, Argentina
[2] UNSL, IMASL, RA-5700 San Luis, Argentina
关键词
Biform Games; Imputations; Domination; Cooperative Games;
D O I
10.1166/jama.2013.1037
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Brandenburger and Stuart [3] introduce the concept of biform game that is used to model the games that have a non-cooperative stage and another cooperative stage. In this mixed model, the choice of each strategy profile determines a cooperative game to be played. In order for the participants analyze and decide what strategy takes them to a game that guarantees the greatest benefit, we propose to generalize the concept of domination extending it to the case in which the imputations belong to two different games. Also, we generalize a theorem establishing necessary and/or sufficient conditions in order for an imputation not to be dominated, and we include examples to illustrate some situations.
引用
收藏
页码:135 / 138
页数:4
相关论文
共 50 条
  • [1] Biform games
    Brandenburger, Adam
    Stuart, Harborne
    [J]. MANAGEMENT SCIENCE, 2007, 53 (04) : 537 - 549
  • [2] APPLICATIONS OF BIFORM GAMES
    Fiala, Petr
    Majovska, Renata
    [J]. PROCEEDINGS OF THE INTERNATIONAL CONFERENCE: QUANTITATIVE METHODS IN ECONOMICS: MULTIPLE CRITERIA DECISION MAKING XIX, 2018, : 104 - 111
  • [3] Biform games in supply chains
    Fiala, Petr
    [J]. 33RD INTERNATIONAL CONFERENCE MATHEMATICAL METHODS IN ECONOMICS (MME 2015), 2015, : 177 - 183
  • [4] Cooperative Games Based on Coalition Functions in Biform Games
    Liu, Chenwei
    Xiang, Shuwen
    Yang, Yanlong
    Luo, Enquan
    [J]. AXIOMS, 2023, 12 (03)
  • [5] Equilibrium Searching in Supply Chains by Biform Games
    Fiala, Petr
    Majovska, Renata
    [J]. HRADEC ECONOMIC DAYS 2020, VOL 10, PT 1, 2020, 10 : 136 - 141
  • [6] The variety of domination games
    Bresar, Bostjan
    Bujtas, Csilla
    Gologranc, Tanja
    Klavzar, Sandi
    Kosmrlj, Gasper
    Marc, Tilen
    Patkos, Balazs
    Tuza, Zsolt
    Vizer, Mate
    [J]. AEQUATIONES MATHEMATICAE, 2019, 93 (06) : 1085 - 1109
  • [7] The variety of domination games
    Boštjan Brešar
    Csilla Bujtás
    Tanja Gologranc
    Sandi Klavžar
    Gašper Košmrlj
    Tilen Marc
    Balázs Patkós
    Zsolt Tuza
    Máté Vizer
    [J]. Aequationes mathematicae, 2019, 93 : 1085 - 1109
  • [8] Biased Domination Games
    Sereekiatdilok, Tharit
    Vichitkunakorn, Panupong
    [J]. THAI JOURNAL OF MATHEMATICS, 2023, 21 (04): : 775 - 784
  • [9] Theory for biform games CIS value-based equilibrium strategies
    Nan, Jiang-Xia
    Wang, Pan-Pan
    Li, Deng-Feng
    [J]. Kongzhi yu Juece/Control and Decision, 2020, 35 (06): : 1427 - 1434
  • [10] Modelling and analysis of co-opetition in network industries by biform games
    Petr Fiala
    [J]. Central European Journal of Operations Research, 2022, 30 : 647 - 665