机构:
Inst Math Phys & Mech, Ljubljana, SloveniaInst Math Phys & Mech, Ljubljana, Slovenia
Bresar, Bostjan
[1
]
Bujtas, Csilla
论文数: 0引用数: 0
h-index: 0
机构:
Univ Pannonia, Fac Informat Technol, Veszprem, Hungary
Univ Ljubljana, Fac Math & Phys, Ljubljana, SloveniaInst Math Phys & Mech, Ljubljana, Slovenia
Bujtas, Csilla
[2
,3
]
Gologranc, Tanja
论文数: 0引用数: 0
h-index: 0
机构:
Inst Math Phys & Mech, Ljubljana, SloveniaInst Math Phys & Mech, Ljubljana, Slovenia
Gologranc, Tanja
[1
]
Klavzar, Sandi
论文数: 0引用数: 0
h-index: 0
机构:
Inst Math Phys & Mech, Ljubljana, Slovenia
Univ Ljubljana, Fac Math & Phys, Ljubljana, SloveniaInst Math Phys & Mech, Ljubljana, Slovenia
Klavzar, Sandi
[1
,3
]
Kosmrlj, Gasper
论文数: 0引用数: 0
h-index: 0
机构:
Inst Math Phys & Mech, Ljubljana, Slovenia
Abelium R&D, Ljubljana, SloveniaInst Math Phys & Mech, Ljubljana, Slovenia
Kosmrlj, Gasper
[1
,5
]
Marc, Tilen
论文数: 0引用数: 0
h-index: 0
机构:
Inst Math Phys & Mech, Ljubljana, Slovenia
Univ Ljubljana, Fac Math & Phys, Ljubljana, SloveniaInst Math Phys & Mech, Ljubljana, Slovenia
Marc, Tilen
[1
,3
]
Patkos, Balazs
论文数: 0引用数: 0
h-index: 0
机构:
Hungarian Acad Sci, Alfred Renyi Inst Math, Budapest, HungaryInst Math Phys & Mech, Ljubljana, Slovenia
Patkos, Balazs
[4
]
Tuza, Zsolt
论文数: 0引用数: 0
h-index: 0
机构:
Univ Pannonia, Fac Informat Technol, Veszprem, Hungary
Hungarian Acad Sci, Alfred Renyi Inst Math, Budapest, HungaryInst Math Phys & Mech, Ljubljana, Slovenia
Tuza, Zsolt
[2
,4
]
Vizer, Mate
论文数: 0引用数: 0
h-index: 0
机构:
Hungarian Acad Sci, Alfred Renyi Inst Math, Budapest, HungaryInst Math Phys & Mech, Ljubljana, Slovenia
Vizer, Mate
[4
]
机构:
[1] Inst Math Phys & Mech, Ljubljana, Slovenia
[2] Univ Pannonia, Fac Informat Technol, Veszprem, Hungary
[3] Univ Ljubljana, Fac Math & Phys, Ljubljana, Slovenia
[4] Hungarian Acad Sci, Alfred Renyi Inst Math, Budapest, Hungary
Domination game (Brear et al. in SIAM J Discrete Math 24:979-991, 2010) and total domination game (Henning et al. in Graphs Comb 31:1453-1462 (2015) are by now well established games played on graphs by two players, named Dominator and Staller. In this paper, Z-domination game, L-domination game, and LL-domination game are introduced as natural companions of the standard domination games. Versions of the Continuation Principle are proved for the new games. It is proved that in each of these games the outcome of the game, which is a corresponding graph invariant, differs by at most one depending whether Dominator or Staller starts the game. The hierarchy of the five domination games is established. The invariants are also bounded with respect to the (total) domination number and to the order of a graph. Values of the three new invariants are determined for paths up to a small constant independent from the length of a path. Several open problems and a conjecture are listed. The latter asserts that the L-domination game number is not greater than 6 / 7 of the order of a graph.
机构:
Univ Ljubljana, Fac Math & Phys, Ljubljana, SloveniaUniv Ljubljana, Fac Math & Phys, Ljubljana, Slovenia
Bujtas, Csilla
Irsic, Vesna
论文数: 0引用数: 0
h-index: 0
机构:
Univ Ljubljana, Fac Math & Phys, Ljubljana, Slovenia
Inst Math Phys & Mech, Ljubljana, SloveniaUniv Ljubljana, Fac Math & Phys, Ljubljana, Slovenia
Irsic, Vesna
Klavzar, Sandi
论文数: 0引用数: 0
h-index: 0
机构:
Univ Ljubljana, Fac Math & Phys, Ljubljana, Slovenia
Inst Math Phys & Mech, Ljubljana, Slovenia
Univ Maribor, Fac Nat Sci & Math, Maribor, SloveniaUniv Ljubljana, Fac Math & Phys, Ljubljana, Slovenia