STABILIZATION OF HEBBIAN NEURAL NETS BY INHIBITORY LEARNING

被引:13
|
作者
EASTON, P [1 ]
GORDON, PE [1 ]
机构
[1] UNIV MASSACHUSETTS,DEPT PHYS,BOSTON,MA 02125
关键词
D O I
10.1007/BF00336182
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
引用
收藏
页码:1 / 9
页数:9
相关论文
共 50 条
  • [1] Compensatory Hebbian learning for categorisation in simulated biological neural nets
    Huyck, Christian R.
    Mitchell, Ian G.
    BIOLOGICALLY INSPIRED COGNITIVE ARCHITECTURES, 2013, 6 : 3 - 7
  • [2] The learning of linear neural nets with anti-Hebbian rules
    Matsuoka, K
    Kawamoto, M
    SYSTEMS AND COMPUTERS IN JAPAN, 1996, 27 (03) : 84 - 93
  • [3] HEBBIAN LEARNING RECONSIDERED - REPRESENTATION OF STATIC AND DYNAMIC OBJECTS IN ASSOCIATIVE NEURAL NETS
    HERZ, AV
    SULZER, B
    KUHN, R
    VANHEMMEN, JL
    BIOLOGICAL CYBERNETICS, 1989, 60 (06) : 457 - 467
  • [4] Unsupervised Hebbian learning in neural networks
    Freisleben, B
    Hagen, C
    COMPUTING ANTICIPATORY SYSTEMS: CASYS - FIRST INTERNATIONAL CONFERENCE, 1998, 437 : 606 - 625
  • [5] Modular neural networks with Hebbian learning rule
    Goltsev, Alexander
    Gritsenko, Vladimir
    NEUROCOMPUTING, 2009, 72 (10-12) : 2477 - 2482
  • [6] Continuous neural network with windowed Hebbian learning
    M. Fotouhi
    M. Heidari
    M. Sharifitabar
    Biological Cybernetics, 2015, 109 : 321 - 332
  • [7] Continuous neural network with windowed Hebbian learning
    Fotouhi, M.
    Heidari, M.
    Sharifitabar, M.
    BIOLOGICAL CYBERNETICS, 2015, 109 (03) : 321 - 332
  • [8] Contrastive Hebbian Feedforward Learning for Neural Networks
    Kermiche, Noureddine
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2020, 31 (06) : 2118 - 2128
  • [9] Hebbian learning of context in recurrent neural networks
    Brunel, N
    NEURAL COMPUTATION, 1996, 8 (08) : 1677 - 1710
  • [10] Learning Rule for a Quantum Neural Network Inspired by Hebbian Learning
    Osakabe, Yoshihiro
    Sato, Shigeo
    Akima, Hisanao
    Kinjo, Mitsunaga
    Sakuraba, Masao
    IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2021, E104D (02) : 237 - 245