SUPERCONNECTIONS, THOM CLASSES, AND EQUIVARIANT DIFFERENTIAL FORMS

被引:266
|
作者
MATHAI, V [1 ]
QUILLEN, D [1 ]
机构
[1] UNIV OXFORD,INST MATH,OXFORD OX1 3LB,ENGLAND
关键词
D O I
10.1016/0040-9383(86)90007-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
引用
收藏
页码:85 / 110
页数:26
相关论文
共 50 条
  • [31] HEAT KERNELS AND THOM FORMS
    MATHAI, V
    JOURNAL OF FUNCTIONAL ANALYSIS, 1992, 104 (01) : 34 - 46
  • [32] Generalized Dirichlet to Neumann operator on invariant differential forms and equivariant cohomology
    Al-Zamil, Qusay S. A.
    Montaldi, James
    TOPOLOGY AND ITS APPLICATIONS, 2012, 159 (03) : 823 - 832
  • [33] Combinatorial formulas for products of Thom classes
    Guillemin, V
    Zara, C
    GEOMETRY, MECHANICS AND DYNAMICS: VOLUME IN HONOR OF THE 60TH BIRTHDAY OF J. E. MARSDEN, 2002, : 363 - 405
  • [34] EQUIVARIANT AND INVARIANT THEORY OF NETS OF CONICS WITH AN APPLICATION TO THOM POLYNOMIALS
    Domokos, M.
    Feher, L. M.
    Rimanyi, R.
    JOURNAL OF SINGULARITIES, 2013, 7 : 1 - 20
  • [35] The Thom isomorphism in gauge-equivariant K-theory
    Nistor, Victor
    Troitsky, Evgenij
    C(STAR)-ALGEBRAS AND ELLIPTIC THEORY, 2006, : 213 - +
  • [36] RATIONAL EQUIVARIANT FORMS
    El Basraoui, Abdelkrim
    Sebbar, Abdellah
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2012, 8 (04) : 963 - 981
  • [37] Equivariant η-invariants and η-forms
    Goette, S
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2000, 526 : 181 - 236
  • [38] Chern classes in equivariant bordism
    Schwede, Stefan
    FORUM OF MATHEMATICS SIGMA, 2024, 12
  • [39] Otopy classes of equivariant maps
    Bartlomiejczyk, Piotr
    Geba, Kazimierz
    Izydorek, Marek
    JOURNAL OF FIXED POINT THEORY AND APPLICATIONS, 2010, 7 (01) : 145 - 160
  • [40] Eilenberg-Mac Lane spectra as equivariant Thom spectra
    Hahn, Jeremy
    Wilson, Dylan
    GEOMETRY & TOPOLOGY, 2020, 24 (06) : 2709 - 2748