GENERAL DUALITY FOR PERPETUAL AMERICAN OPTIONS

被引:5
|
作者
Alfonsi, Aurelien [1 ,2 ]
Jourdain, Benjamin [1 ]
机构
[1] Ecole Ponts, CERMICS, Project Team Mathfi, ParisTech, 6-8 Ave Blaise Pascal, F-77455 Marne La Vallee, France
[2] TU Berlin, Inst Math, D-10623 Berlin, Germany
关键词
Perpetual American options; Dupire's formula; Call-Put duality; calibration of volatility; optimal stopping;
D O I
10.1142/S0219024908004920
中图分类号
F8 [财政、金融];
学科分类号
0202 ;
摘要
In this paper, we investigate the generalization of the Call-Put duality equality obtained in Alfonsi and Jourdain (preprint, 2006, available at http://cermics.enpc.fr/reports/CERMICS-2006/CERMICS-2006-307.pdf) for perpetual American options when the Call-Put payoff (y - x)(+) is replaced by phi(x, y). It turns out that the duality still holds under monotonicity and concavity assumptions on phi. The specific analytical form of the Call-Put payoff only makes calculations easier but is not crucial unlike in the derivation of the Call-Put duality equality for European options. Last, we give some examples for which the optimal strategy is known explicitly.
引用
收藏
页码:545 / 566
页数:22
相关论文
共 50 条
  • [21] The Premium Reduction of European, American, and Perpetual Log Return Options
    Taylor, Stephen
    Vecer, Jan
    JOURNAL OF DERIVATIVES, 2021, 28 (04): : 7 - 23
  • [22] Perpetual American maximum options with Markov-modulated dynamics
    Yongqing Xu
    Yandong Wu
    Lithuanian Mathematical Journal, 2011, 51 : 106 - 119
  • [23] Pricing Perpetual American Lookback Options Under Stochastic Volatility
    Min-Ku Lee
    Computational Economics, 2019, 53 : 1265 - 1277
  • [24] On perpetual American options in a multidimensional Black-Scholes model
    Rozkosz, Andrzej
    STOCHASTICS-AN INTERNATIONAL JOURNAL OF PROBABILITY AND STOCHASTIC PROCESSES, 2022, 94 (05) : 723 - 744
  • [25] Pricing of perpetual American and Bermudan options by binomial tree method
    Lin J.
    Liang J.
    Frontiers of Mathematics in China, 2007, 2 (2) : 243 - 256
  • [26] Uncertainty, hesitancy degree of investors and pricing perpetual American options
    Yang S.
    Ming L.
    Tang H.
    Yang S.
    Xitong Gongcheng Lilun yu Shijian/System Engineering Theory and Practice, 2020, 40 (11): : 2839 - 2847
  • [27] PERPETUAL CURRENCY OPTIONS
    GARMAN, MB
    INTERNATIONAL JOURNAL OF FORECASTING, 1987, 3 (01) : 179 - 184
  • [28] Pricing Perpetual American Put Options with Asset-Dependent Discounting
    Al-Hadad, Jonas
    Palmowski, Zbigniew
    JOURNAL OF RISK AND FINANCIAL MANAGEMENT, 2021, 14 (03)
  • [29] Perpetual American Cancellable Standard Options in Models with Last Passage Times
    Gapeev, Pavel V.
    Li, Libo
    Wu, Zhuoshu
    ALGORITHMS, 2021, 14 (01) : 1 - 11
  • [30] On the perpetual American put options for level dependent volatility models with jumps
    Bayraktar, Erhan
    QUANTITATIVE FINANCE, 2011, 11 (03) : 335 - 341