MINIMUM NORM SOLUTIONS TO LINEAR ELASTIC ANALYSIS PROBLEMS

被引:14
|
作者
KANEKO, I
PLEMMONS, RJ
机构
[1] N CAROLINA STATE UNIV, DEPT MATH, RALEIGH, NC 27607 USA
[2] N CAROLINA STATE UNIV, DEPT COMP SCI, RALEIGH, NC 27607 USA
关键词
D O I
10.1002/nme.1620200602
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
引用
收藏
页码:983 / 998
页数:16
相关论文
共 50 条
  • [31] An iterative method to compute minimum norm solutions of ill-posed problems in Hilbert spaces
    Meisam Jozi
    Saeed Karimi
    Davod Khojasteh Salkuyeh
    Afrika Matematika, 2019, 30 : 797 - 816
  • [32] Analysis of two variants of an inertial projection algorithm for finding the minimum-norm solutions of variational inequality and fixed point problems
    Linh, Ha Manh
    Reich, Simeon
    Thong, Duong Viet
    Dung, Vu Tien
    Lan, Nguyen Phuong
    NUMERICAL ALGORITHMS, 2022, 89 (04) : 1695 - 1721
  • [33] A LOW-COST OPTIMIZATION APPROACH FOR SOLVING MINIMUM NORM LINEAR SYSTEMS AND LINEAR LEAST-SQUARES PROBLEMS
    Cores, Debora
    Figueroa, Johanna
    JOURNAL OF COMPUTATIONAL MATHEMATICS, 2024, 42 (04): : 932 - 954
  • [34] Analysis of two variants of an inertial projection algorithm for finding the minimum-norm solutions of variational inequality and fixed point problems
    Ha Manh Linh
    Simeon Reich
    Duong Viet Thong
    Vu Tien Dung
    Nguyen Phuong Lan
    Numerical Algorithms, 2022, 89 : 1695 - 1721
  • [35] An Analysis of Linear Algebra Teaching Problems and Solutions
    Liu, Jianming
    PROCEEDINGS OF THE 2015 INTERNATIONAL CONFERENCE ON HUMANITIES AND SOCIAL SCIENCE RESEARCH, 2015, 31 : 96 - 99
  • [36] An algorithm for a minimum norm solution of a system of linear inequalities
    Bahi, S
    Sreedharan, VP
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2003, 80 (05) : 639 - 647
  • [37] A note on the minimum-norm in dual space approach to some classical linear optimal control problems
    Zhou, Yue
    Kachroo, Pushkin
    Ozbay, Kaan
    JOURNAL OF ENGINEERING-JOE, 2023, 2023 (06):
  • [38] Finite-Time Distributed Linear Equation Solver for Solutions With Minimum l1-Norm
    Zhou, Jingqiu
    Wang, Xuan
    Mou, Shaoshuai
    Anderson, Brian D. O.
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2020, 65 (04) : 1691 - 1696
  • [39] ON A CLASS OF MOMENT PROBLEMS FOR SOLVING MINIMUM NORM CONTROL-PROBLEMS
    KRABS, W
    CONTROL AND ESTIMATION OF DISTRIBUTED PARAMETER SYSTEMS, 1989, 91 : 197 - 210
  • [40] Approximation Algorithms for Minimum Norm and Ordered Optimization Problems
    Chakrabarty, Deeparnab
    Swamy, Chaitanya
    PROCEEDINGS OF THE 51ST ANNUAL ACM SIGACT SYMPOSIUM ON THEORY OF COMPUTING (STOC '19), 2019, : 126 - 137