INTERNAL REPRESENTATIONS OF THE MOTOR APPARATUS - IMPLICATIONS FROM GENERALIZATION IN VISUOMOTOR LEARNING

被引:95
|
作者
IMAMIZU, H
UNO, Y
KAWATO, M
机构
[1] ATR Human Information Processing Research Laboratories, Kyoto
关键词
D O I
10.1037/0096-1523.21.5.1174
中图分类号
B84 [心理学];
学科分类号
04 ; 0402 ;
摘要
Recent computational studies have proposed that the motor system acquires internal models of kinematic transformations, dynamic transformations, or both by learning. Computationally, internal models can be characterized by 2 extreme representations: structured and tabular (C. G. Atkeson, 1989). Tabular models do not need prior knowledge about the structure of the motor apparatus, but they lack the capability to generalize learned movements. Structured models, on the other hand, can generalize learned movements, but they require an analytical description of the motor apparatus. In investigating humans' capacity to generalize kinematic transformations, we examined which type of representation humans' motor system might use. Results suggest that internal representations are nonstructured and nontabular. Findings may be due to a neural network model with a medium number of neurons and synapses.
引用
收藏
页码:1174 / 1198
页数:25
相关论文
共 50 条
  • [41] Learning efficient internal representations from natural image collections
    Turiel, A
    Delgado, JM
    Parga, N
    [J]. NEUROCOMPUTING, 2004, 58 : 915 - 921
  • [42] Learning from the brain? On the neurobiology of psychic structure and internal representations
    Henningsen, P
    [J]. FORUM DER PSYCHOANALYSE, 2000, 16 (02) : 99 - 115
  • [43] APPARATUS FOR STUDYING SERIAL MOTOR LEARNING
    FARR, RG
    RUSSELL, CH
    MARION, R
    [J]. PERCEPTUAL AND MOTOR SKILLS, 1956, 6 (02) : 93 - 96
  • [44] Generalization patterns for reach adaptation and proprioceptive recalibration differ after visuomotor learning
    Cressman, Erin K.
    Henriques, Denise Y. P.
    [J]. JOURNAL OF NEUROPHYSIOLOGY, 2015, 114 (01) : 354 - 365
  • [45] Target size matters: target errors contribute to the generalization of implicit visuomotor learning
    Reichenthal, Maayan
    Avraham, Guy
    Karniel, Amir
    Shmuelof, Lior
    [J]. JOURNAL OF NEUROPHYSIOLOGY, 2016, 116 (02) : 411 - 424
  • [46] Perceptual variability: Implications for learning and generalization
    Zaman, Jonas
    Chalkia, Anastasia
    Zenses, Ann-Kathrin
    Bilgin, Antoine Selim
    Beckers, Tom
    Vervliet, Bram
    Boddez, Yannick
    [J]. PSYCHONOMIC BULLETIN & REVIEW, 2021, 28 (01) : 1 - 19
  • [47] Perceptual variability: Implications for learning and generalization
    Jonas Zaman
    Anastasia Chalkia
    Ann-Kathrin Zenses
    Antoine Selim Bilgin
    Tom Beckers
    Bram Vervliet
    Yannick Boddez
    [J]. Psychonomic Bulletin & Review, 2021, 28 : 1 - 19
  • [48] Using Predictive Representations to Improve Generalization in Reinforcement Learning
    Rafols, Eddie J.
    Ring, Mark B.
    Sutton, Richard S.
    Tanner, Brian
    [J]. 19TH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE (IJCAI-05), 2005, : 835 - 840
  • [49] Motor learning with unstable neural representations
    Rokni, Uri
    Richardson, Andrew G.
    Bizzi, Emilio
    Seung, H. Sebastian
    [J]. NEURON, 2007, 54 (04) : 653 - 666
  • [50] Symbolic representations in motor sequence learning
    Bo, J.
    Peltier, S. J.
    Noll, D. C.
    Seidler, R. D.
    [J]. NEUROIMAGE, 2011, 54 (01) : 417 - 426