CONTROLLING THE SEARCH FOR A COMPROMISE SOLUTION IN MULTIOBJECTIVE OPTIMIZATION

被引:3
|
作者
LOOTSMA, FA [1 ]
ATHAN, TW [1 ]
PAPALAMBROS, PY [1 ]
机构
[1] DELFT UNIV TECHNOL, FAC TECH MATH & INFORMAT, 2628 CD DELFT, NETHERLANDS
关键词
MULTIOBJECTIVE OPTIMIZATION; PARETO SOLUTIONS; COMPROMISE;
D O I
10.1080/03052159508941255
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Two methods for multi-objective optimization are discussed, both based upon a scalarizing function with weights incorporating the decision maker's subjective preferential judgement: one of them minimizes the weighted Chebychev-norm distance from the ideal vector, the other maximizes a weighted geometric mean of the objective functions. By an appropriate choice of the weights the computational process homes in towards a non-dominated (efficient, Pareto-optimal) solution where the deviations of the objective-function values from the ideal values are felt to be in a proper balance. These approaches are not affected by the units of measurement expressing the performance of the feasible solutions under the respective objectives. In essence, the two methods make the concept of the relative importance of the objective functions operational. Numerical experience with a gearbox design problem is presented at the end of the paper.
引用
收藏
页码:65 / 81
页数:17
相关论文
共 50 条
  • [21] The Fuzzy Solution of Multiobjective Optimization Control
    Cong Wenxiang (Heilongjiang University 150080)
    应用数学, 1992, (04) : 100 - 102
  • [23] Hybridization of Decomposition and Local Search for Multiobjective Optimization
    Ke, Liangjun
    Zhang, Qingfu
    Battiti, Roberto
    IEEE TRANSACTIONS ON CYBERNETICS, 2014, 44 (10) : 1808 - 1820
  • [24] Expanding the Search Space of Multiobjective IMRT Optimization
    Holdsworth, C.
    Phillips, M.
    MEDICAL PHYSICS, 2011, 38 (06)
  • [25] Tabu search for multiobjective combinatorial optimization: TAMOCO
    Hansen, MP
    CONTROL AND CYBERNETICS, 2000, 29 (03): : 799 - 818
  • [26] Multioperator search strategy for evolutionary multiobjective optimization
    Gao, Xiangzhou
    Liu, Tingrui
    Tan, Liguo
    Song, Shenmin
    SWARM AND EVOLUTIONARY COMPUTATION, 2022, 71
  • [27] Multiobjective Optimization for the Stochastic Physical Search Problem
    Hudack, Jeffrey
    Gemelli, Nathaniel
    Brown, Daniel
    Loscalzo, Steven
    Oh, Jae C.
    CURRENT APPROACHES IN APPLIED ARTIFICIAL INTELLIGENCE, 2015, 9101 : 212 - 221
  • [28] A Hybrid Local Search Operator for Multiobjective Optimization
    Diaz-Manriquez, Alan
    Toscano-Pulido, Gregorio
    Landa-Becerra, Ricardo
    2013 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2013, : 173 - 180
  • [29] AbYSS: Adapting scatter search to multiobjective optimization
    Nebro, Antonio J.
    Luna, Francisco
    Alba, Enrique
    Dorronsoro, Bernabe
    Durillo, Juan J.
    Beham, Andreas
    IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2008, 12 (04) : 439 - 457
  • [30] A decomposition-based coevolutionary multiobjective local search for combinatorial multiobjective optimization
    Cai, Xinye
    Hu, Mi
    Gong, Dunwei
    Guo, Yi-nan
    Zhang, Yong
    Fan, Zhun
    Huang, Yuhua
    SWARM AND EVOLUTIONARY COMPUTATION, 2019, 49 : 178 - 193