APPLICATION OF EXP-FUNCTION METHOD TO REDUCED OSTROVSKY EQUATION AND KURAMOTO-SIVASHINSKY EQUATION

被引:0
|
作者
Ganji, D. D. [1 ]
Babaelahi, M. [2 ]
Joneidi, A. A. [3 ]
Davodi, A. G. [4 ]
机构
[1] Babol Univ Technol, Dept Mech Engn, Babol Sar, Mazandaran, Iran
[2] KN Toosi Univ Technol Tehran, Dept Mech Engn, Tehran, Iran
[3] Shahrood Univ Technol, Dept Mech Engn, Shahrood, Iran
[4] Shahrood Univ Technol, Dept Civil Engn, Shahrood, Iran
关键词
Exp-Function method; generalized solitonary solutions; reduced Ostrovsky equation (ROE); Camassa-Holm equation; Kuramoto-Sivashinsky equation;
D O I
10.1142/S1793557109000480
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, a kind of analytical technique, called Exp-Function method is implemented to find the solitary wave solution of the Kuramoto-Sivashinsky equation and some of the most useful equations in physics, the Camassa-Holm equation and the reduced Ostrovsky equation (ROE). This method can be used as an alternative to obtain analytic and approximate solutions of different types of fractional differential equations applied in engineering mathematics. Some numerical examples are presented to illustrate the efficiency and reliability of the Exp-Function method. It is predicted that Exp-Function method can be found widely applicable in engineering.
引用
收藏
页码:567 / 578
页数:12
相关论文
共 50 条
  • [31] Optimal bounds on the Kuramoto-Sivashinsky equation
    Otto, Felix
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2009, 257 (07) : 2188 - 2245
  • [32] Hopping behavior in the Kuramoto-Sivashinsky equation
    Blomgren, P
    Gasner, S
    Palacios, A
    [J]. CHAOS, 2005, 15 (01)
  • [33] An exact solution to the Kuramoto-Sivashinsky equation
    Abdel-Hamid, B
    [J]. PHYSICS LETTERS A, 1999, 263 (4-6) : 338 - 340
  • [34] On a nonlocal analog of the Kuramoto-Sivashinsky equation
    Granero-Belinchon, Rafael
    Hunter, John K.
    [J]. NONLINEARITY, 2015, 28 (04) : 1103 - 1133
  • [35] On the Global Existence for the Kuramoto-Sivashinsky Equation
    Igor Kukavica
    David Massatt
    [J]. Journal of Dynamics and Differential Equations, 2023, 35 : 69 - 85
  • [36] ANISOTROPY EFFECT ON KURAMOTO-SIVASHINSKY EQUATION
    SHIRAISHI, K
    SAITO, Y
    [J]. JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1995, 64 (01) : 9 - 13
  • [37] An exact solution to the Kuramoto-Sivashinsky equation
    Abdel-Hamid, Bishri
    [J]. Physics Letters, Section A: General, Atomic and Solid State Physics, 1999, 263 (4-6): : 338 - 340
  • [38] ON THE BIFURCATION PHENOMENA OF THE KURAMOTO-SIVASHINSKY EQUATION
    Feudel, Fred
    Feudel, Ulrike
    Brandenburg, Axel
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1993, 3 (05): : 1299 - 1303
  • [39] Adaptive stabilization of the Kuramoto-Sivashinsky equation
    Kobayashi, T
    [J]. INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 2002, 33 (03) : 175 - 180
  • [40] Robust control of the Kuramoto-Sivashinsky equation
    Hu, CB
    Temam, R
    [J]. DYNAMICS OF CONTINUOUS DISCRETE AND IMPULSIVE SYSTEMS-SERIES B-APPLICATIONS & ALGORITHMS, 2001, 8 (03): : 315 - 338