A non-intrusive parallel-in-time adjoint solver with the XBraid library

被引:10
|
作者
Guenther, Stefanie [1 ]
Gauger, Nicolas R. [1 ]
Schroder, Jacob B. [2 ]
机构
[1] TU Kaiserslautern, Chair Sci Comp, Paul Ehrlich Str 34-36, D-67663 Kaiserslautern, Germany
[2] Lawrence Livermore Natl Lab, Ctr Appl Sci Comp, POB 808,L-561, Livermore, CA 94551 USA
关键词
Parallel-in-time; Multigrid-in-time; Parareal; Optimization; Adjoint sensitivity; Unsteady adjoint; High performance computing;
D O I
10.1007/s00791-018-0300-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, an adjoint solver for the multigrid-in-time software library XBraid is presented. XBraid provides a non-intrusive approach for simulating unsteady dynamics on multiple processors while parallelizing not only in space but also in the time domain (XBraid: Parallel multigrid in time,. It applies an iterative multigrid reduction in time algorithm to existing spatially parallel classical time propagators and computes the unsteady solution parallel in time. Techniques from Automatic Differentiation are used to develop a consistent discrete adjoint solver which provides sensitivity information of output quantities with respect to design parameter changes. The adjoint code runs backwards through the primal XBraid actions and accumulates gradient information parallel in time. It is highly non-intrusive as existing adjoint time propagators can easily be integrated through the adjoint interface. The adjoint code is validated on advection-dominated flow with periodic upstream boundary condition. It provides similar strong scaling results as the primal XBraid solver and offers great potential for speeding up the overall computational costs for sensitivity analysis using multiple processors.
引用
收藏
页码:85 / 95
页数:11
相关论文
共 50 条
  • [31] A Parallel-in-Time Adjoint Sensitivity Analysis for a B6 Bridge-Motor Supply Circuit
    Sarpe, Julian
    Klaedtke, Andreas
    De Gersem, Herbert
    IEEE TRANSACTIONS ON MAGNETICS, 2024, 60 (03) : 1 - 4
  • [32] Device and Time Invariant Features for Transferable Non-Intrusive Load Monitoring
    Schirmer, Pascal A.
    Mporas, Iosif
    IEEE OPEN ACCESS JOURNAL OF POWER AND ENERGY, 2022, 9 : 121 - 130
  • [33] Dynamic time warping based non-intrusive load transient identification
    Liu, Bo
    Luan, Wenpeng
    Yu, Yixin
    APPLIED ENERGY, 2017, 195 : 634 - 645
  • [34] Efficient Time Series Disaggregation for Non-intrusive Appliance Load Monitoring
    Fan, Yao-Chung
    Liu, Xingjie
    Lee, Wang-Chien
    Chen, Arbee L. P.
    2012 9TH INTERNATIONAL CONFERENCE ON UBIQUITOUS INTELLIGENCE & COMPUTING AND 9TH INTERNATIONAL CONFERENCE ON AUTONOMIC & TRUSTED COMPUTING (UIC/ATC), 2012, : 248 - 255
  • [35] A Real-Time Non-Intrusive Tool for Network Traffic Analysis
    Giorgi, G.
    Dindo, S.
    Vantini, M.
    Narduzzi, C.
    I2MTC: 2009 IEEE INSTRUMENTATION & MEASUREMENT TECHNOLOGY CONFERENCE, VOLS 1-3, 2009, : 53 - 57
  • [36] Non-Intrusive Sleep Analyzer for Real Time Detection of Sleep Anomalies
    Tonchev, Krasimir
    Koleva, Pavlina
    Manolova, Agata
    Tsenov, Georgi
    Poulkov, Vladimir
    2016 39TH INTERNATIONAL CONFERENCE ON TELECOMMUNICATIONS AND SIGNAL PROCESSING (TSP), 2016, : 400 - 403
  • [37] Local/global non-intrusive crack propagation simulation using a multigrid X-FEM solver
    Passieux, Jean-Charles
    Rethore, Julien
    Gravouil, Anthony
    Baietto, Marie-Christine
    COMPUTATIONAL MECHANICS, 2013, 52 (06) : 1381 - 1393
  • [38] Non-Intrusive Online Time Domain Reflectometry Technique for Power Cables
    Subudhi, Ch Santosh
    Sen, S. K.
    IEEE TRANSACTIONS ON POWER DELIVERY, 2024, 39 (01) : 101 - 110
  • [39] Local/global non-intrusive crack propagation simulation using a multigrid X-FEM solver
    Jean-Charles Passieux
    Julien Réthoré
    Anthony Gravouil
    Marie-Christine Baietto
    Computational Mechanics, 2013, 52 : 1381 - 1393
  • [40] dsCleaner: A Python']Python Library to Clean, Preprocess and Convert Non-Intrusive Load Monitoring Datasets
    Pereira, Manuel
    Velosa, Nuno
    Pereira, Lucas
    DATA, 2019, 4 (03)