A non-intrusive parallel-in-time adjoint solver with the XBraid library

被引:10
|
作者
Guenther, Stefanie [1 ]
Gauger, Nicolas R. [1 ]
Schroder, Jacob B. [2 ]
机构
[1] TU Kaiserslautern, Chair Sci Comp, Paul Ehrlich Str 34-36, D-67663 Kaiserslautern, Germany
[2] Lawrence Livermore Natl Lab, Ctr Appl Sci Comp, POB 808,L-561, Livermore, CA 94551 USA
关键词
Parallel-in-time; Multigrid-in-time; Parareal; Optimization; Adjoint sensitivity; Unsteady adjoint; High performance computing;
D O I
10.1007/s00791-018-0300-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, an adjoint solver for the multigrid-in-time software library XBraid is presented. XBraid provides a non-intrusive approach for simulating unsteady dynamics on multiple processors while parallelizing not only in space but also in the time domain (XBraid: Parallel multigrid in time,. It applies an iterative multigrid reduction in time algorithm to existing spatially parallel classical time propagators and computes the unsteady solution parallel in time. Techniques from Automatic Differentiation are used to develop a consistent discrete adjoint solver which provides sensitivity information of output quantities with respect to design parameter changes. The adjoint code runs backwards through the primal XBraid actions and accumulates gradient information parallel in time. It is highly non-intrusive as existing adjoint time propagators can easily be integrated through the adjoint interface. The adjoint code is validated on advection-dominated flow with periodic upstream boundary condition. It provides similar strong scaling results as the primal XBraid solver and offers great potential for speeding up the overall computational costs for sensitivity analysis using multiple processors.
引用
收藏
页码:85 / 95
页数:11
相关论文
共 50 条
  • [1] A non-intrusive parallel-in-time approach for simultaneous optimization with unsteady PDEs
    Guenther, S.
    Gauger, N. R.
    Schroder, J. B.
    [J]. OPTIMIZATION METHODS & SOFTWARE, 2019, 34 (06): : 1306 - 1321
  • [2] A PETSc parallel-in-time solver based on MGRIT algorithm
    Mele, Valeria
    Constantinescu, Emil M.
    Carracciuolo, Luisa
    D'Amore, Luisa
    [J]. CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, 2018, 30 (24):
  • [3] Non-intrusive, parallel recovery of replicated data
    Jiménez-Peris, R
    Patiño-Martínez, M
    Alonso, G
    [J]. 21ST IEEE SYMPOSIUM ON RELIABLE DISTRIBUTED SYSTEMS, PROCEEDINGS, 2002, : 150 - 159
  • [4] A parallel-in-time approach for accelerating direct-adjoint studies
    Skene, C. S.
    Eggl, M. F.
    Schmid, P. J.
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2021, 429
  • [5] RunAssert: A Non-Intrusive Run-Time Assertion for Parallel Programs Debugging
    Wen, Chi-Neng
    Chou, Shu-Hsuan
    Chen, Tien-Fu
    Lin, Tay-Jyi
    [J]. 2010 DESIGN, AUTOMATION & TEST IN EUROPE (DATE 2010), 2010, : 287 - 290
  • [6] Performance Evaluation for a PETSc Parallel-in-Time Solver Based on the MGRIT Algorithm
    Mele, Valeria
    Romano, Diego
    Constantinescu, Emil M.
    Carracciuolo, Luisa
    D'Amore, Luisa
    [J]. EURO-PAR 2018: PARALLEL PROCESSING WORKSHOPS, 2019, 11339 : 716 - 728
  • [7] Samsara Parallel: A Non-BSP Parallel-in-Time Model
    Chen, Yifeng
    Huang, Kun
    Wang, Bei
    Li, Guohui
    Cui, Xiang
    [J]. ACM SIGPLAN NOTICES, 2016, 51 (08) : 401 - 402
  • [8] Parallel-in-time adjoint-based optimization – application to unsteady incompressible flows
    Costanzo, S.
    Sayadi, T.
    Fosas de Pando, M.
    Schmid, P.J.
    Frey, P.
    [J]. Journal of Computational Physics, 2022, 471
  • [9] Adjoint sensitivity analysis on chaotic dynamical systems by Non-Intrusive Least Squares Adjoint Shadowing (NILSAS)
    Ni, Angxiu
    Talnikar, Chaitanya
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2019, 395 : 690 - 709
  • [10] PARALLEL-IN-TIME SOLVER FOR THE ALL-AT-ONCE RUNGE-KUTTA DISCRETIZATION
    Leveque, Santolo
    Bergamaschi, Luca
    Martínez, Ángeles
    Pearson, John W.
    [J]. SIAM Journal on Matrix Analysis and Applications, 2024, 45 (04) : 1902 - 1928