ON THE DECIDABILITY OF INTEGER SUBGRAPH PROBLEMS ON CONTEXT-FREE GRAPH LANGUAGES

被引:0
|
作者
WANKE, E
机构
关键词
D O I
暂无
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
We show the decidability of integer subgraph problems (ISPs) on context-free sets of graphs L(GAMMA) defined by hyperedge replacement systems (HRSs) GAMMA. Additionally, we give a very general characterization of ISPs to be decidable on a set L(GAMMA). An ISP PI consists of a property S-PI and a mapping f-PI. If J is a subgraph of a graph G, then s-PI(G, J) is true or false, and f-PI(G, J) is an integer. We show the decidability of the following problem: Let PI-1,...,PI-n be n ISPs that fulfill our characterization and let C be a set of conditions (i, o, j) that specify two ISPs PI-i and PI-j and a compare symbol o is-an-element-of { =, not-equal, <, less-than-or-equal-to, >, greater-than-or-equal-to}. Given a context-free set of graphs L defined by a HRS, is there a graph G is-an-element-of L that has n subgraphs J1,...,J(n) such that s-PI-i(G, J) holds true for i = 1,...,n and s-PI-i(G, J(i)) o s-PI-j(G, J(j)) for each condition (i, o, j)?
引用
收藏
页码:415 / 426
页数:12
相关论文
共 50 条
  • [31] Logics for context-free languages
    Lautemann, C
    Schwentick, T
    Therien, D
    COMPUTER SCIENCE LOGIC, 1995, 933 : 205 - 216
  • [32] ON REGULARITY OF CONTEXT-FREE LANGUAGES
    EHRENFEUCHT, A
    HAUSSLER, D
    ROZENBERG, G
    THEORETICAL COMPUTER SCIENCE, 1983, 27 (03) : 311 - 332
  • [33] CATERPILLARS AND CONTEXT-FREE LANGUAGES
    CHYTIL, MP
    MONIEN, B
    LECTURE NOTES IN COMPUTER SCIENCE, 1990, 415 : 70 - 81
  • [34] QUOTIENTS OF CONTEXT-FREE LANGUAGES
    GINSBURG, S
    SPANIER, EH
    JOURNAL OF THE ACM, 1963, 10 (04) : 487 - &
  • [35] Characterization of context-free languages
    Badano, M.
    Vaggione, D.
    THEORETICAL COMPUTER SCIENCE, 2017, 676 : 92 - 96
  • [36] CHARACTERIZATION OF CONTEXT-FREE LANGUAGES
    DEGALLEGO, MS
    ANNALES DE LA SOCIETE SCIENTIFIQUE DE BRUXELLES SERIES 1-SCIENCES MATHEMATIQUES ASTRONOMIQUES ET PHYSIQUES, 1979, 93 (03): : 155 - 158
  • [37] On polyslender context-free languages
    Dömösi, P
    Martin-Vide, C
    Mateescu, A
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2005, 66 (1-2): : 1 - 15
  • [38] On strongly context-free languages
    Ilie, L
    Paun, G
    Rozenberg, G
    Salomaa, A
    DISCRETE APPLIED MATHEMATICS, 2000, 103 (1-3) : 153 - 165
  • [39] BICENTERS OF CONTEXT-FREE LANGUAGES
    AUTEBERT, JM
    BEAUQUIER, J
    BOASSON, L
    GIRE, F
    ACTA INFORMATICA, 1984, 21 (02) : 209 - 227
  • [40] ERASABLE CONTEXT-FREE LANGUAGES
    GREIBACH, SA
    INFORMATION AND CONTROL, 1975, 29 (04): : 301 - 326