TIME-DEPENDENT SPIN CORRELATIONS IN THE HEISENBERG MAGNET AT INFINITE TEMPERATURE

被引:15
|
作者
LOVESEY, SW
ENGDAHL, E
CUCCOLI, A
TOGNETTI, V
BALCAR, E
机构
[1] UNIV FLORENCE,DIPARTIMENTO FIS,I-50125 FLORENCE,ITALY
[2] AUSTRIAN UNIV,ATOMINST,A-1020 VIENNA,AUSTRIA
关键词
D O I
10.1088/0953-8984/6/35/001
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
A coupled-mode theory of spin fluctuations in the d-dimensional Heisenberg magnet at infinite temperature is used to predict the time dependence of various spin correlation functions. The real-space spin autocorrelation function is shown to have a long-time behaviour approximately (1/t)d/theta where theta = (4 + d)/2. Properties at intermediate values of the time are extracted from the theory by numerical analysis. In this time window, the reciprocal-lattice spin autocorrelation function, G(q,t), is, to a good approximation, an exponential function of time. The decay rate is proportional to q(alpha), where q is the wavevector. Analysis of our numerical data indicates that the exponent alpha depends weakly on d, and it is significantly different from the value 2 which is compatible with a spin diffusion model. In the asymptotic limit, defined by q --> 0, t --> infinity and q2t --> 0, G(q,t) is a function of a single variable = (tq(theta)). This result rules against the validity of a diffusion model also in the asymptotic limit.
引用
收藏
页码:L521 / L526
页数:6
相关论文
共 50 条
  • [41] TEMPERATURE-DEPENDENT SPIN CORRELATIONS IN AN ORGANIC MAGNET - [DMTZNC]2-[TCNQ]3
    TAKAGI, S
    NAKATSU, K
    DATE, M
    [J]. JOURNAL DE PHYSIQUE, 1988, 49 (C-8): : 1473 - 1474
  • [42] COMPUTER EXPERIMENTS ON DILUTE 3-DIMENSIONAL HEISENBERG MAGNET - INFINITE TEMPERATURE
    KLENIN, MA
    BLUME, M
    [J]. PHYSICAL REVIEW B, 1976, 14 (01): : 235 - 240
  • [43] Simulation of time-dependent Heisenberg models in one dimension
    Volosniev, A. G.
    Hammer, H. -W.
    Zinner, N. T.
    [J]. PHYSICAL REVIEW B, 2016, 93 (09)
  • [44] Fractional time-dependent Schrodinger equation on the Heisenberg group
    Urban, Roman
    Zienkiewicz, Jacek
    [J]. MATHEMATISCHE ZEITSCHRIFT, 2008, 260 (04) : 931 - 948
  • [45] Infinite series of time-dependent Dyson maps
    Fring, Andreas
    Tenney, Rebecca
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2021, 54 (48)
  • [46] TIME-DEPENDENT QUADRATIC HAMILTONIAN AND THE HEISENBERG UNCERTAINTY PRINCIPLE
    JANNUSSIS, A
    KARAYANNIS, G
    PANAGOPOYLOS, P
    PAPATHEOU, V
    SIMEONIDIS, M
    VAVOYGIOS, D
    SIAFARIKAS, P
    ZISIS, V
    [J]. LETTERE AL NUOVO CIMENTO, 1983, 36 (02): : 41 - 43
  • [47] TIME-DEPENDENT PAIR CORRELATIONS IN LIQUID LEAD
    BROCKHOUSE, BN
    POPE, NK
    [J]. PHYSICAL REVIEW LETTERS, 1959, 3 (06) : 259 - 262
  • [48] TIME-DEPENDENT CORRELATIONS IN SOLVABLE FERROMAGNETIC MODEL
    MERMIN, ND
    [J]. PHYSICAL REVIEW A-GENERAL PHYSICS, 1964, 134 (1A): : A112 - &
  • [49] Time-dependent quantum correlations in phase space
    Krumm, F.
    Vogel, W.
    Sperling, J.
    [J]. PHYSICAL REVIEW A, 2017, 95 (06)
  • [50] TIME-DEPENDENT FLUCTUATION CORRELATION IN HEISENBERG-LIKE SPIN SYSTEMS IN A UNIFORM EXTERNAL MAGNETIC FIELD
    STEY, GC
    [J]. PHYSICA, 1971, 52 (04): : 523 - &