THE BIVARIATE INVERSE GAUSSIAN DISTRIBUTION - AN INTRODUCTION

被引:12
|
作者
KOCHERLAKOTA, S
机构
关键词
D O I
10.1080/03610928608829171
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
引用
收藏
页码:1081 / 1112
页数:32
相关论文
共 50 条
  • [31] A HEURISTIC DERIVATION OF THE INVERSE GAUSSIAN DISTRIBUTION
    WHITMORE, GA
    SESHADRI, V
    [J]. AMERICAN STATISTICIAN, 1987, 41 (04): : 280 - 281
  • [32] INVERSE GAUSSIAN DISTRIBUTION AND ITS APPLICATION
    SATO, S
    INOUE, J
    [J]. ELECTRONICS AND COMMUNICATIONS IN JAPAN PART III-FUNDAMENTAL ELECTRONIC SCIENCE, 1994, 77 (01): : 32 - 42
  • [33] Inverse Gaussian distribution and its application
    Sato, Shunsuke
    Inoue, Junko
    [J]. Electronics and Communications in Japan, Part III: Fundamental Electronic Science (English translation of Denshi Tsushin Gakkai Ronbunshi), 1994, 77 (01): : 32 - 42
  • [34] ESTIMATION OF INVERSE GAUSSIAN DISTRIBUTION FUNCTION
    CHHIKARA, RS
    FOLKS, JL
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1974, 69 (345) : 250 - 254
  • [35] ASSESSING THE INVERSE GAUSSIAN DISTRIBUTION ASSUMPTION
    EDGEMAN, RL
    [J]. IEEE TRANSACTIONS ON RELIABILITY, 1990, 39 (03) : 352 - 355
  • [36] On Bivariate Inverse Lindley Distribution Derived From Copula
    Abulebda, Mohammed
    Pandey, Arvind
    Tyagi, Shikhar
    [J]. THAILAND STATISTICIAN, 2023, 21 (02): : 291 - 304
  • [37] Bivariate Mixture of Inverse Weibull Distribution: Properties and Estimation
    AL-Moisheer, A. S.
    Alotaibi, Refah Mohammed
    Alomani, Ghadah A.
    Rezk, H.
    [J]. MATHEMATICAL PROBLEMS IN ENGINEERING, 2020, 2020 (2020)
  • [38] Asymptotically Efficient Estimation of a Bivariate Gaussian-Weibull Distribution and an Introduction to the Associated Pseudo-truncated Weibull
    Verrill, Steve P.
    Evans, James W.
    Kretschmann, David E.
    Hatfield, Cherilyn A.
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2015, 44 (14) : 2957 - 2975
  • [39] Optimal step stress accelerated degradation tests with the bivariate inverse Gaussian process
    Qu, Liang
    Li, Jin
    Zhao, Xiujie
    Zhang, Min
    Lv, Zhenyu
    [J]. QUALITY AND RELIABILITY ENGINEERING INTERNATIONAL, 2024, : 3173 - 3192
  • [40] Bivariate Analysis of Incomplete Degradation Observations Based on Inverse Gaussian Processes and Copulas
    Peng, Weiwen
    Li, Yan-Feng
    Yang, Yuan-Jian
    Zhu, Shun-Peng
    Huang, Hong-Zhong
    [J]. IEEE TRANSACTIONS ON RELIABILITY, 2016, 65 (02) : 624 - 639