Non-percolating nanotube networks for thin film transistors: a pathway to channel length reduction

被引:0
|
作者
Tassi, N. G. [1 ,2 ]
Rabolt, J. F. [2 ]
Blanchet, G. B. [1 ]
机构
[1] DuPont Co Inc, Cent Res & Dev, Wilmington, DE USA
[2] Univ Delaware, Dept Mat Sci, Newark, DE USA
关键词
transconductance; thin film transistors; organic semi conductors; percolating semiconducting networks;
D O I
10.1243/17403499JNN114
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
This study outlines a method to increase the transconductance of thin film transistors (TFTs) by assembling non-percolating random arrays of carbon nanotubes. It represents an effective, simple tool to substantially reduce the transistor channel length, thus increase transconductance, without lessening the on/off ratio. When non-percolating arrays of carbon nanotubes are linked via a semiconducting overlay, the majority of current paths between source and drain follow the highly conducting nanotubes with short, switchable semiconducting links completing the circuit. This field-induced percolating network allows for high transconductance with relatively large source-drain distance. Thus, transistors can be manufactured inexpensively by commercially available techniques using a variety of available semiconductors.
引用
收藏
页码:87 / 91
页数:5
相关论文
共 50 条
  • [11] Influence of Reduction in Effective Channel Length on Device Operations of In-Ga-Zn-O Thin-Film Transistors With Variations in Channel Compositions
    Bae, Soo-Hyun
    Ryoo, Hyun-Joo
    Yang, Jong-Heon
    Kim, Yong-Hae
    Hwang, Chi-Sun
    Yoon, Sung-Min
    IEEE TRANSACTIONS ON ELECTRON DEVICES, 2021, 68 (12) : 6159 - 6165
  • [12] ANALYSIS OF EFFECTIVE CHANNEL LENGTH IN AMORPHOUS-SILICON THIN-FILM TRANSISTORS
    KANEKO, Y
    TOYABE, T
    TSUKADA, T
    JAPANESE JOURNAL OF APPLIED PHYSICS PART 1-REGULAR PAPERS SHORT NOTES & REVIEW PAPERS, 1992, 31 (11): : 3506 - 3510
  • [13] Stencil lithography for organic thin-film transistors with a channel length of 300 nm
    Zschieschang, Ute
    Borchert, James W.
    Geiger, Michael
    Letzkus, Florian
    Burghartz, Joachim N.
    Klauk, Hagen
    ORGANIC ELECTRONICS, 2018, 61 : 65 - 69
  • [14] Submicron-Channel-Length Organic Thin-Film Transistors on Flexible Substrates
    Zschieschang, Ute
    Kraft, Ulrike
    Roedel, Reinhold
    Klauk, Hagen
    2016 IEEE NANOTECHNOLOGY MATERIALS AND DEVICES CONFERENCE (NMDC), 2016,
  • [15] p-channel, n-channel thin film transistors and p-n diodes based on single wall carbon nanotube networks
    Zhou, YX
    Gaur, A
    Hur, SH
    Kocabas, C
    Meitl, MA
    Shim, M
    Rogers, JA
    NANO LETTERS, 2004, 4 (10) : 2031 - 2035
  • [16] Carbon nanotube thin film transistors on flexible substrates
    Chandra, Bhupesh
    Park, Hongsik
    Maarouf, Ahmed
    Martyna, Glenn J.
    Tulevski, George S.
    APPLIED PHYSICS LETTERS, 2011, 99 (07)
  • [17] Ambipolarity suppression of carbon nanotube thin film transistors
    Huang, Qi
    Liu, Fang
    Zhao, Jie
    Xia, Jiye
    Liang, Xuelei
    CARBON, 2020, 157 : 358 - 363
  • [18] Flexible carbon nanotube thin-film transistors
    Novak, J. P.
    Fink, R. L.
    Yaniv, Z.
    IDW/AD '05: PROCEEDINGS OF THE 12TH INTERNATIONAL DISPLAY WORKSHOPS IN CONJUNCTION WITH ASIA DISPLAY 2005, VOLS 1 AND 2, 2005, : 257 - 259
  • [19] Carbon nanotube thin film transistors by droplet electrophoresis
    Lefebvre, J.
    Ding, J.
    MATERIALS TODAY COMMUNICATIONS, 2017, 10 : 72 - 79
  • [20] Reduction of channel resistance in amorphous oxide thin-film transistors with buried layer
    Chong, Eugene
    Kim, Bosul
    Lee, Sang Yeol
    E-MRS 2011 FALL SYMPOSIUM I: ADVANCES IN TRANSPARENT ELECTRONICS, FROM MATERIALS TO DEVICES III, 2012, 34